
Sage CRM 2023 R2
Developer Guide

Updated: September 2023

© 2023, The Sage Group plc or its licensors. All rights reserved. Sage, Sage logos, and Sage product
and service names mentioned herein are the trademarks of The Sage Group plc or its licensors. All
other trademarks are the property of their respective owners.

Sage CRM 2023 R2 - Developer Guide Page 2 of 403

Contents

About this guide 9

Getting started 11
Sage CRM architecture 12

Web 12

Extensibility 13

.NET API 14

Security 16

Database 17

Creating an ASP page 18

Adding an ASP page to Sage CRM 21

Framesets 22

Creating custom queries 23

Creating a record set 23

Formatting a list 24

Manipulating record sets 25

Understanding context 26

Scripting in the Sage CRM interface 26

Using field-level scripting 27

Using table-level scripting 29

Example: Client-side validation 29

Example: Accessing user information 30

Example: Getting information about installed modules 32

Customization 33

Using ASP pages 33

Using customizable areas 33

Transferring customizations to another Sage CRM instance 35

Sage CRM 2023 R2 - Developer Guide Page 3 of 403

Objects and blocks 55
Objects 56

Blocks 59

About blocks 59

Referencing block names 59

Creating a block 61

Customizing a block 61

Displaying a block 62

Lists 62

Creating a list 62

Customizing a list 63

Displaying a list using runblock 63

Displaying a list using an ASP page 63

Screens 64

Creating a screen 64

Customizing a screen 65

Displaying a screen using runblock and screen name 65

Displaying a screen using runblock with a custom block 66

Displaying a screen using an ASP page 66

Buttons 67

Creating button groups 67

Adding buttons to button groups 68

Displaying button groups 68

Restricting access to button groups 68

Classic Dashboard 69

Customizing the Classic Dashboard 69

Adding a List block to the Classic Dashboard 71

Adding a Content block to the Classic Dashboard 71

Adding a Chart block to the Classic Dashboard 73

Interactive Dashboard 73

Customizing the Interactive Dashboard 73

Adding a block to the Interactive Dashboard using the Contents field 74

Displaying an ASP page in a gadget 75

Adding a third-party gadget to the Interactive Dashboard 76

System menus 83

Modifying system menus 83

Creating a new menu button 84

Sage CRM 2023 R2 - Developer Guide Page 4 of 403

Adding an external link to the main menu 85

Tabs 85

Creating a new tab group 86

Editing the main menu tab group 86

Adding a tab that links to an ASP page 87

Restricting access to a tab 87

Tab properties 89

Tab actions 90

Adding Help to custom pages 91

Database 93
Creating a new database table 94

Creating a new database connection 95

Creating a new table connection 96

Table- and entity-level scripts 97

Table-level scripts 97

Detached table-level scripts 98

Entity-level scripts 98

Creating a script 99

Viewing script logs 100

Disabling table-level scripts 100

Database customization examples 101

Creating a tab to display a list of invoices 101

Displaying an invoice from a list 104

Adding new data entry and maintenance screens 106

Using UpdateRecord in an entity-level script 112

Using InsertRecord in a table-level script 113

Using PostInsertRecord in a table-level script 113

Using UpdateRecord in a table-level script 114

Using DeleteRecord in a table-level script 115

Getting a list of field types used in the system 116

Graphics 117
Considerations for using graphics 118

Supported graphic file formats 118

Using external images 119

Changing image color 119

Clearing an image 120

Sage CRM 2023 R2 - Developer Guide Page 5 of 403

Applying dithering, zooming, or transparency 120

Setting color, line width, and style 121

Setting a color 121

Setting line width 122

Setting line style 122

Filling solid shapes with color 123

Specifying a color 123

Loading an image 123

Specifying area to fill in 124

Specifying a predefined style 124

Changing current font 125

Selecting a font 125

Setting font size 125

Setting font color 126

Setting font style 126

Rotating text output 127

Using animation 127

Suppressing errors when processing an image 128

Code samples 128

Steps to add a progress bar 128

Steps to add a pipeline to show Opportunities for a Company 130

Implementing animation 132

Workflow 135
Changing workflow state 135

ASP page that changes workflow state 136

Moving records to another workflow 137

Identifying workflow context 138

Identifying workflow transitions 138

Scripting escalation rules in a component 139

Activating workflow for secondary or custom entities 140

Using ASP pages in workflow 141

Creating workflow on an external table 141

Using client side code in workflow 142

Charts 143

About animated and interactive charts 144

Creating an Opportunity certainty widget 144

Creating an Opportunities and Cases widget 145

Sage CRM 2023 R2 - Developer Guide Page 6 of 403

Creating an organization chart 147

APIs 151
Using Web Services API 152

About Web Services 152

Prerequisites for using Web Services 153

Enabling Web Services for a user 153

Configuring Web Services 154

Required fields in quotes and orders 156

Using the WSDL file 158

Web Services methods 158

Web Services objects 161

Web Services selection fields 163

Sample SOAP requests and XML 166

C# code samples 171

Using SData API 173

About SData 173

Prerequisites for using SData 174

SData authentication 174

Managing SData access 175

HTTP request URL 176

SData endpoints 179

Using .NET API 192

Reference 193
ASP objects 194

AddressList object 196

Attachment object 198

AttachmentList object 201

CRM object 203

CRMBase object 213

CRMBlock object 219

CRMChartGraphicBlock object 226

CRMContainerBlock object 232

CRMContentBlock object 243

CRMEntryBlock object 244

CRMEntryGroupBlock object 261

CRMFileBlock object 265

Sage CRM 2023 R2 - Developer Guide Page 7 of 403

CRMGraphicBlock object 268

CRMGridColBlock object 288

CRMListBlock object 296

CRMMarqueeBlock object 303

CRMMessageBlock object 307

CRMOrgGraphicBlock object 315

CRMPipelineGraphicBlock object 317

CRMQuery object 321

CRMRecord object 329

CRMSelfService object 338

CRMTargetLists object 342

CRMTargetListField object 351

CRMTargetListFields object 352

Email object 355

MailAddress object 362

MsgHandler object 364

Component Manager methods 367

Add methods 368

Copy methods 389

Create methods 391

Delete and Drop methods 393

Get methods 397

SearchAndReplace methods 399

Other methods 401

Sage CRM 2023 R2 - Developer Guide Page 8 of 403

About this guide

This guide is for Sage CRM implementers, developers, and system administrators. It provides
information on how to customize and extend the functionality of Sage CRM by using the
Extensibility Module (EM), also known as CRM Blocks.

This guide assumes that you are familiar with the following:

l Sage CRM System Administrator Guide or Help

l SQL Server databases, tables, views, data relationships, and normalization

l ASP, C#, HTML, JavaScript, JSON, Microsoft .NET Framework, SOAP, Web Services, and XML

Step-by-step instructions in this guide assume that your default theme in Sage CRM is
Contemporary. If you are using a different theme, you may need to use slightly different steps to
access the Administration area in Sage CRM.

Note: This help refers to Sage CRM but your system might have a different brand name, such
as Sage 200 Sales and Marketing. The system works in the same way regardless of its name. The
functionality that's available to you depends on the modules that you're licensed to use.

Sage CRM 2023 R2 - Developer Guide Page 9 of 403

Sage CRM 2023 R2 - Developer Guide Page 10 of 403

Getting started

l Sage CRM architecture

l Creating an ASP page

l Adding an ASP page to Sage CRM

l Framesets

l Creating custom queries

l Understanding context

l Scripting in the Sage CRM interface

Sage CRM 2023 R2 - Developer Guide Page 11 of 403

Sage CRM architecture
l Web

l Extensibility

l .NET API

l Security

l Database

l Customization

Web

l Web browser. Sage CRM has a thin client configuration, therefore users can access and
work with Sage CRM by using just a web browser. This can be any web browser supported by
Sage CRM.

l Application server. The Sage CRM application server includes a number of components,
which work together to coordinate the delivery of information and functionality to Sage
CRM users. These components are used to implement user security, maintain user
persistence, read and write information in the Sage CRM database, generate web pages
from data, and process business rules and logic. The application server also runs the
eWare.dll file, which is the Sage CRM dynamic link library. Web Server (IIS) communicates
with Sage CRM via eWare.dll and Internet Server Application Programming Interface (ISAPI)
technologies. eWare.dll and Web Server (IIS) must be on the same server.

Sage CRM 2023 R2 - Developer Guide Page 12 of 403

l Microsoft SQL Server. This server hosts the Sage CRM database that stores corporate data
and metadata, which define the Sage CRM screen configurations, system customization,
security, and business rules.

l Mail server. You can connect the application server to this optional component to
automate the sending of emails and SMS messages as part of the Sage CRM
implementation. To customize the email functionality, you can use the CRMEmail object,
and the CRMMsgHandler object and its child objects. You can also use the
CRMMessageBlock object to send messages in SMS and email format.

l Apache Tomcat Redirector. The redirector in Sage CRM is an ASP.NET Reverse Proxy,
which is a 32-bit/64-bit ASP.NET web application configured in standard Apache format.
This ASP.NET rewriter uses the HTTP protocol instead of binary socket and can be accessed
directly in a browser, so you can easily check if Tomcat is working. For more information,
see the Installation and Upgrade Help on the Sage CRM Help Center and articles on the
Sage CRM Community.

Extensibility

The Extensibility Module (EM) provides a range of powerful functions that allows you to customize
and extend the existing CRM product. The functions are available through the CRM ActiveX object,
which consists of CRM methods and properties. CRM object components have a variety of functions,
which render HTML and display Screen and List objects previously defined in the CRM system.

Database connectivity options include searching, inserting, updating, and deleting data to and
from CRM data, as well as data from external tables and databases.

To see if the EM is included in your CRM installation, go to <My Profile> | Administration |
Customization | Company. If the EM is included, Blocks and TableScripts tabs are displayed.

Sage CRM 2023 R2 - Developer Guide Page 13 of 403

http://help.sagecrm.com/
https://community.sagecrm.com/

.NET API
The core of the Sage CRM solution is represented by an ActiveX component. Sage has leveraged
Microsoft’s Interop technology to expose this existing COM component to managed code (code
executed by Microsoft's .NET Framework Common Language Runtime).

The process of exposing COM components to the .NET Framework can be challenging, involving
steps such as converting the coclasses and interfaces contained in a COM type library to metadata
and deploying Interop applications as strong-named, signed assemblies in the global assembly
cache.

The Sage CRM SDK for .NET handles these low-level implementation details by providing a
redistributable package that installs the .NET component onto your system and makes it readily
available within the Visual Studio environment.

l CustomDotNetDll action calls Application Extension.

l CustomDotNetDll action uses COM interop to trigger behavior in CRM .NET Component.

l Calls CRM Application Extension.

l Passes CRM Application Extension DLL name and session information.
l CRM Application Extension processes data and generates and returns HTML.

The Sage CRM .NET API requires Microsoft .NET Framework 2.0. It provides a type library that
exposes Sage CRM objects, properties, and methods. Through its core libraries, the Sage CRM .NET
Component manages data access and web interface generation. Projects developed using the Sage
CRM .NET Component are compiled into a DLL and called directly from within Sage CRM. By using
Sage CRM metadata, Application Extensions constructed using the Sage CRM .NET API look, feel
and perform like core system pages.

Reference to the Sage CRM .NET component from within ASP.NET projects is not supported.

Sage CRM 2023 R2 - Developer Guide Page 14 of 403

You can develop Sage CRM Application Extensions with any programming language that conforms
with the .NET Framework 2.0, such as C#, VB.NET, or J#.

Advantages of using .NET API versus ASP

.NET API advantages ASP drawbacks

l Benefit from Microsoft Visual
Studio features such as
IntelliSense. With the Sage CRM .NET
component properly referenced by the
application, Visual Studio treats Sage
CRM objects like any other initialized
C# objects. For example, if you're using
a Sage CRM object and call one of its
methods, IntelliSense provides you with
a list of the object’s properties and
methods when you type the dot operator
(.) after the object name.

l Access to .NET class library. You can
code in C# or Visual Basic .NET, which
allows you to use the resources
provided by the .NET class library.

l Improved security and protection of
your source code. .NET applications
are compiled into binary DLLs before
deployment, preventing access to your
source code.

l No access to Integrated
Development Environment
(IDE) features. ASP pages are coded in
simple text editors so you can't use IDE
features, such as IntelliSense (which
provides drop-down lists of available
objects, properties, and methods),
syntax checking, and debugging tools.

l Poor debugging. Due to the absence
of meaningful syntax checking and
debugging tools in text editors, you
can't ensure your ASP code is working
as intended until you load your custom
ASP page in Sage CRM.

l Only suitable when simple coding
is required. ASP simplicity makes it
appropriate only to those solutions that
require simple coding and rapid
deployment.

l Does not comply to Object-oriented
programming (OOP) principles.
Creating separate ASP pages is not
conducive to OOP principles and
associated practices, such as
refactoring. Creating multifile projects
can demand more advanced project
tools.

l Source code is not protected. Users
can view the source code of your
custom ASP pages by selecting the
appropriate command from the web
browser menu.

Sage CRM 2023 R2 - Developer Guide Page 15 of 403

Security
Sage CRM is modeled on an n-tier architecture. Each tier includes a number of security
mechanisms.

l Application-level security

l Server-level security

l Database-level security

Application-level security

Every user is assigned a valid user name and password. Only the System Administrator can add or
remove users. Within the system, each user can be assigned different levels of access security
depending on their job role. The system knows when IIS uses HTTPS; when the client attaches
documents to a form in the system, it sends it through encrypted sessions.

l User Authentication/Password Setup. A user requires a login ID and password to access
the system. The user's password is encrypted in the system and in the database for
maximum security.

l Tab and Team Restrictions. The System Administrator can restrict access to individual
tabs within CRM, and the level of access that each user is allocated. The Administrator can
assign users to teams, which further categorizes and restricts levels of access to individual
tabs.

l Security Profiles and Territories. The System Administrator can set up Territory Profiles
and Security Territories to manage security access rights across the organization. A Profile
groups users according to access rights (View, Update, Insert, Delete). A Territory groups
user rights by location or other criteria. For example, users in the Europe territory can view
all Opportunities in the USA territory but can't update them. Administrators can set up
complex inter-territory security rights and exception handling using Territory Policies.
Profiles and Territories are set up from <My Profile> | Administration | Users |
Security. For more information, see the System Administrator Help.

Server-level security

You can use any of the following methods to secure the Sage CRM server:

l NT Challenge/Response. Allows access to clients with a valid domain login.

l Hyper Text Transfer Protocol Secure (HTTPS). Secures your data sessions with client
users.

l A firewall. Restricts unauthorized access from outside the network and allows only
authorized users through.

Sage CRM 2023 R2 - Developer Guide Page 16 of 403

Database-level security

Sage CRM users don't have direct access to the database. The CRM DLL accesses the database
using a predefined login. When a user requests data, the CRM DLL connects to the database using
Microsoft Data Access Components (MDAC) and retrieves the required data. For extra security, you
can configure the CRM DLL to access the database with a user account that has limited
permissions.

Database
l Sage CRM entities

l Metadata

l SQL and triggers

Sage CRM entities

A Sage CRM entity represents a real world entity such as a Company, Person, or Sales Opportunity.
The entity can have relationships with other entities. For example, a Company can have many
People working for it, and Communications and Sales Opportunities can be associated with People.

Sage CRM entities consist of information from several tables linked in a logical way. For example,
the Company entity consists of information from the Company, Address, Phone, and Person tables.

CRM includes the following primary entities:

l Company

l Case

l Opportunity

l Person

l Communication

l Leads

l Quotes

l Orders

Unlike database entities, Sage CRM entities are several tables linked together in a logical business
grouping.

Sage CRM 2023 R2 - Developer Guide Page 17 of 403

Metadata

Sage CRM metadata encompasses all information required to make sense of stored business data.
For example, metadata tables contain field captions, or convert code values from drop-down fields
into meaningful information.

The system database contains Sage CRM metadata tables. Names of these tables have the custom
prefix.

SQL and triggers

l You can use the CRM Query object's SQL method to include SQL statements in an ASP page.

l You can use SQL conditional clauses in <My Profile> | Administration | Customization
| <Entity> | Tabs. For more information, see the System Administrator Help.

l You can use Sage CRM table and entity level scripts instead of SQL triggers.

Creating an ASP page
Sage CRM ASP pages use the properties and methods of the CRM object to connect to the system
database and produce formatted output to the web browser. Standard ASP scripting conventions
are observed.

The following example code creates a custom ASP page which enables users to search for contacts
in the Sage CRM database and view a list of search results:

1 <!-- #include file ="sagecrm.js"-->
2
3 <%
4 // Get an empty container block.
5 var SearchContainer = CRM.GetBlock('Container');
6
7 // Add the Person Search Box.
8 var SearchBlock = CRM.GetBlock('PersonSearchBox');
9 SearchContainer.AddBlock(SearchBlock);

10
11 // Change the label and image on the default button.
12 SearchContainer.ButtonTitle='Search';
13 SearchContainer.ButtonImage='Search.Gif';
14
15 // If button has been pressed then add the list block to show search results.
16 if (CRM.Mode == 2)
17 {
18 var resultsBlock = CRM.GetBlock('PersonGrid');
19 resultsBlock.ArgObj = SearchBlock;
20 SearchContainer.AddBlock(resultsBlock);

Sage CRM 2023 R2 - Developer Guide Page 18 of 403

21 }
22 if (!Defined(Request.Form))
23 {
24 // First time - display mode.
25 CRM.Mode = Edit;
26 }
27 else
28 {
29 // Mode is always Save.
30 CRM.Mode = Save;
31 }
32 CRM.AddContent(SearchContainer.Execute());
33 var sHTML = CRM.GetPage();
34 Response.Write(sHTML);
35 %>

Below are the descriptions of building blocks used in this code.

<!-- #include file ="sagecrm.js"-->

This building block specifies the include file that instantiates and initializes the CRM object. The
include file also references the Sage CRM CSS, defines constants, and checks for errors. Depending
on the scripting language you use, you can specify one of the following include files in your code:

l SAGECRM.JS. Referenced in JavaScript-based ASP pages. This file sets the default
language to JavaScript.

l SAGECRMNOLANG.JS. Doesn't set the default language.

l SAGECRM.VBS. Referenced in Visual Basic-based ASP pages. This sets the default language
to VB Script.

l eWare.JS. For backward compatibility with Sage CRM versions older than 5.6.

l ACCPACCRM.JS. For backward compatibility with Sage CRM versions older than 7.0.

l ACCPACCRMNOLANG.JS. For backward compatibility with Sage CRM versions older than
7.0.

l ACCPACCRM.VBS. For backward compatibility with Sage CRM versions older than 7.0.

<%
// Get an empty container block.
var SearchContainer = CRM.GetBlock('Container');

In this building block, ASP delimiters <% %> tell the ISAPI.DLL that the contained ASP code
executes on the server.

The GetBlock(BlockName) method initializes a child block that implements core CRM
functionality.

Sage CRM 2023 R2 - Developer Guide Page 19 of 403

The GetBlock(BlockName) method parameter value is Container, which indicates the
CRMContainerBlock object. This object groups and correctly displays output from other objects
on the page. The Container block also provides default onscreen elements, such as buttons, that
make it easier to format and support custom layouts.

The returned CRMContainerBlock object is stored in the variable SearchContainer. The
Container screen contains only default buttons. To make it useful, add some blocks.

var SearchBlock = CRM.GetBlock('PersonSearchBox');

The GetBlock(BlockName) method retrieves a block and its associated functionality. This code
specifies PersonSearchBox which is an instance of the CRMEntryGroupBlock object. To edit the
contents of PersonSearchBox, go to <My Profile> | Administration | Customization | Person |
Screens | Person Search Screen. Other standard screens based on the CRMEntryGroupBlock
object include CompanySearchBox, PersonEntryBox, and CaseDetailBox.

SearchContainer.AddBlock(SearchBlock);

Add SearchBlock, an instance of PersonSearchBox, to the screen container.

1 // Change the label and image on the default button.
2 SearchContainer.ButtonTitle = 'Search';
3 SearchContainer.ButtonImage = 'Search.Gif';

This building block changes the attributes of the Save button. The Container object creates this
by default.

1 // If button has been pressed then add the list block to show search results.
2 if (CRM.Mode == 2)
3 {
4 var resultsBlock = CRM.GetBlock('PersonGrid');
5 resultsBlock.ArgObj = SearchBlock;
6 SearchContainer.AddBlock(resultsBlock);
7 }

CRM.Mode == 2 displays a search results grid when a form is submitted.

The GetBlock(BlockName) method returns a PersonGrid block. PersonGrid is an instance of the
CRMListBlock object. To view the fields displayed in this list, go to <My Profile> |
Administration | Customization | Person | Lists | Person Grid.

The returned PersonGrid block is stored in the resultsBlock variable.

The CRMBlock object's property ArgObj, which is a base property implemented by all subclasses
(such as the PersonGrid block), passes SearchBlock as a parameter for populating the list. This
means that the list resultsBlock takes the search screen SearchBlock as a parameter, and the

Sage CRM 2023 R2 - Developer Guide Page 20 of 403

contents of the list generated by resultsBlock are determined by the values of the fields on the
search screen SearchBlock.

The CRMContainerBlock object's AddBlock(Block) method adds the resultsBlock object.

Adding an ASP page to Sage CRM
When you've created an ASP page and want to make it accessible in Sage CRM, store the .asp file
in the CustomPages folder, and then add the .asp file in Sage CRM by using the Sage
CRM administration area.

The default location of the CustomPages folder on a Sage CRM server is as follows:

%ProgramFiles(x86)%\CRM\CRM\WWWRoot

This example creates a Searchbox tab in the context of a Company.

1. Copy the saved .asp file to the CustomPages folder.

2. Log on to Sage CRM as a system administrator.

3. Go to <My Profile> | Administration | Customization | Company | Tabs.

4. In the Tab Group Name column, click Company.

5. Under Properties, use the following options:

l Caption. Enter a caption for your new tab. For example, Searchbox. When finished,
click Add.
Your new tab appears in the list under Desktop HTML Tab Group Contents. Use
the up and down arrows to position your new tab.

l Actions. Select Customfile.

l Custom File. Enter the name of the custom .asp file you saved in the
CustomPages folder earlier in this procedure. For example, MySearchBox.asp.

6. Click Update and then click Save.

To view the new tab you have just created, open an entity record details screen.

To improve the Sage CRM User Interface, framesets are no longer used in Sage CRM version 7.2 and
later. ASP pages are rendered entirely within the main browser window, which ensures that the top
content and left-hand menu of Sage CRM are always rendered correctly.

Sage CRM 2023 R2 - Developer Guide Page 21 of 403

Framesets
Sage CRM previously used framesets to build the user interface. Framesets were removed in Sage
CRM 7.2 and the sections are now rendered entirely within the same document. The top content
area and the left hand main menu are rendered in DIV tags instead of individual frames.

There's also a change in how JavaScript is included in the user interface. In Sage CRM version 7.1
and earlier, most JavaScript passed into the user interface was embedded in the code. Eware.dll
generated the JavaScript used to control the interface and merged it with HTML. In Sage CRM 7.2,
JavaScript is no longer wrapped up in the eware.dll but instead is contained in .js files in the CRM
or custom folders in WWWRoot. These files are referenced and deployed to the client.

There are new element IDs. If you search for a screen element with a specific ID and that ID has
changed, the element won't be found and your script won't work. Or the ID might now refer to a
different element resulting in your script attempting to manipulate the wrong element.

We strongly recommending that you use the new Client-Side API methods where possible to make
future updates to Sage CRM more seamless.

Due to changes to page structure, the way JavaScript code is referenced within system pages
including the implementation of a new Client-Side API, and new element IDs, you must carefully
review any code that's designed to execute in the browser.

l These changes affect client-side code that references certain functions or objects, and
interacts with frames such as TopContent or eWare_mid. Review how you've included
JavaScript in classic Content blocks, or have used references to ASP pages and the COM API
in a custom gadget.

l Several objects in Sage CRM version 7.1 are created in other frames. For example,
WritetoFrame() and Arrays (userslist, usersdislist, targetlistslist). Change and test any code
that references these objects.

l Check the metadata for screens and lists that contain client-side customizations. Run the
following SQL statements in the database to find screens with defined custom content and
onChange scripts:

select * from Custom_ScreenObjects where Cobj_CustomContent is not null
select * from Custom_Screens where SeaP_OnChangeScript is not null;

l The default basic CTI in Sage CRM version 7.1 used framesets. The CTI button frame and a
frame for the CTI object no longer exist in the same way in Sage CRM version 7.2. The
removal of the framesets effects any customization that depends on CTI interactaction with
the screens. If you're using a third party CTI integration, consult your supplier about
whether it has been updated for Sage CRM 7.2 before upgrading from an earlier Sage CRM
install.

Sage CRM 2023 R2 - Developer Guide Page 22 of 403

http://help.sagecrm.com/js-api/classes/caption.html
http://help.sagecrm.com/js-api/classes/caption.html

Creating custom queries
l Creating a record set

l Formatting a list

l Manipulating record sets

Creating a record set
The Sage CRM API allows easy access to the database to select and update data. The
CreateQueryObj(SQL, Database) method returns a record set that can be viewed and manipulated
in the same way as, for example, an ADO record set.

The following example uses the CRMQuery object to display companies from the software sector
that are ranked as prospects.

1 <!-- #include file ="sagecrm.js"-->
2 <%
3 Query = CRM.CreateQueryObj("SELECT * FROM Company WHERE Comp_Deleted IS NULL AND Comp_Type =

'Prospect' AND Comp_Sector = 'Finance'");
4 Query.SelectSql();
5 while (!Query.QueryEof)
6 {
7 CRM.AddContent(Query.FieldValue("comp_name")+'
');
8 Query.NextRecord();
9 }

10 Response.Write(CRM.GetPage());
11 %>

In this example, the CreateQueryObj(SQL, Database) method returns a CRMQuery object by
specifying a valid SQL statement as a parameter. The default database is used, but you can specify
another database by adding a second parameter to the CreateQueryObj(SQL, Database) method
call.

You can expand the scope of your query by using relational database features such as joins and
views.
To examine or copy system and custom views, go to<My Profile> | Administration |
Customization | <Entity> | Views. Alternatively, scan the list of views in a database
management tool such as SQL Server Enterprise Manager.

In this example, the returned query object is called Query. The SelectSql() method executes the
Select query. You can use the ExecSql() method to run queries that don't return records, such as
Delete, Update, and Insert.

Sage CRM 2023 R2 - Developer Guide Page 23 of 403

In addition to encapsulating components to access and update the database, the CRMQuery
object stores returned data.

This example uses a JavaScript while statement to iterate through the returned records until an
end-of-file marker is found. Within the loop, the values stored for each company's name and email
address are retrieved using the FieldValue property.

The AddContent(Content) method builds up a block of HTML that's displayed when the output of
the GetPage() method is written to the ASP page using the JavaScript Response.Write method.

Formatting a list
Use the CRMListBlock object to apply desired formatting to a filtered list. To initialize the
CRMListBlock object, invoke the GetBlock(BlockName) method with the appropriate parameter.

The following example uses the GetBlock(BlockName) method to create a new list object:

1 <!-- #include file ="sagecrm.js"-->
2 <%
3 var NewList;
4 NewList = CRM.GetBlock("list");
5 NewList.SelectSql = "SELECT * FROM Company WHERE Comp_Deleted IS NULL AND Comp_Type =

'Prospect' AND Comp_Sector = 'Software'";
6 NewList.AddGridCol("Comp_Name");
7 CRM.AddContent(NewList.Execute());
8 Response.Write(CRM.GetPage());
9 %>

The Select query for retrieving a filtered list of company records is the same as the query used
by CRMQuery object. However, the query string is passed to the SelectSql property of the
CRMListBlock object.

The GetBlock(BlockName) method retrieves the CRMListBlock object stored in the NewList

variable.

The AddGridCol(ColName, Position, AllowOrderBy) method specifies which columns to display.
The example shows values relating to the company name and email address.

You can pass only field names that are returned by the SQL query.

You can enter optional addition parameters for this method that specify the position of the column
in the tabular list and whether the column contents are ordered.

The Execute(Arg) method returns HTML to display the selected columns in a properly formatted
list.

The CRMListBlock object has abstracted the process of looping through the available records, so
a WHILE statement testing an EOF marker is not needed.

Sage CRM 2023 R2 - Developer Guide Page 24 of 403

The returned list is passed to the AddContent(Content) method. The GetPage() method is used in
conjunction with Response.Write to display the output in the Sage CRM user interface.

Manipulating record sets
You can construct SQL strings and pass them to CRM objects to apply relational database concepts
to the presentation and manipulation of CRM data.

If you're not familiar with SQL or you need a more abstract approach to handling data, use the
CRMRecord object to create an updateable record object.

The following example calls the CreateRecord(TableName) method and specifies the company
table as an argument:

1 <!-- #include file = "sagecrm.js"-->
2 <%
3 var Comp;
4 var Block;
5 Comp = CRM.CreateRecord('company');
6 Comp.item('comp_Name') = '4D Communications International';
7 Comp.SaveChanges();
8 Block = CRM.GetBlock("companygrid");
9 CRM.AddContent(Block.Execute(''));

10 Response.Write(CRM.GetPage());
11 %>

Below are the descriptions of building blocks used in this code.

Comp.item('<FieldName>') = '<Value>';

Assigns new values to fields. This is similar to opening an ADO updateable recordset. For example,
the following code samples are equivalent:

Comp.item ('comp_Name') = '4D Communications International';

INSERT INTO Company (Comp_Name) Values ('4D Communications');

You're not required to specify the item property because it's the default property for this object.

The following two lines of code are equivalent:

Comp.item('comp_Name') = '4D Communications International';

Sage CRM 2023 R2 - Developer Guide Page 25 of 403

Comp('comp_Name') = '4D Communications International';

Understanding context
In Sage CRM development terms, context refers to information about the current situation of the
user within the software interface. For example, a user who's looking at the Company summary
screen is in the context of that company.

You can easily access contextual information, such as data from Company and Person tables, that
relates directly to what the user is viewing. User table data about the current user is also available
within the context framework. Use the GetContextInfo(Entity, FieldName) method to access
information about the current context.

Scripting in the Sage CRM interface
Although server-side ASP offers full access to the CRM API, it's sometimes more convenient and
quicker to handle tasks using code that runs on the client. You can include server-side and client-
side scripts in the same ASP file.

Client-side scripts are processed by the browser, eliminating round-trips to the server. Client-side
scripting in CRM ASP pages is handled in the normal way using JavaScript and the DOM.

Some Sage CRM scripting fields expect server-side code, while others accommodate client-side
script.

l Server-side code. Use server-side code if you'll use objects from the CRMBlocks hierarchy.
Scripts, such as SQL queries, that manipulate databases need server resources to access the
specified records.

l Client-side code. Use client-side code for immediate responses to user actions, to access
the DOM to navigate the screen interface, and to validate on screen information.

l Use JavaScript, the DOM, the CurrentUser variable, and the ModuleCode variable to
configure screens and create event handlers that respond to the current user's
profile and modules available on the system.

l Use of client-side validation saves time by checking information that's available on
screen before the page is sent to the server for server-side validation. You can enter
code directly through the interface so you can verify the connection between
interface elements and event-handling code.
For more information, see the System Administrator Help.

Sage CRM 2023 R2 - Developer Guide Page 26 of 403

l For information about client-side classes and modules, see the Client-Side API
Help.

Using field-level scripting
You can associate behaviors with individual fields using scripts that execute when a particular
event occurs.

1. Log on to Sage CRM as a system administrator

2. Go to <My Profile> | Administration | Customization | <Entity> | Screens |
<ScreenName>.

3. Select the field you want to customize from Field.

4. Enter code in CreateScript, OnChangeScript, or ValidateScript.
The code is executed when an event affects the selected field.

Scripts in CreateScript run on the server and execute when the page is loaded into CRM.

Scripts in OnChangeScript run on the client and are executed when the JavaScript event
OnChange occurs on the specified field.

Scripts in ValidateScript run on the server and are executed when the user clicks Submit. For
more information, see Validation scripts.

Scripts in CreateScript and ValidateScript can access the CRM API without including files such
as SAGECRM.JS.

CreateScript, OnChangeScript, and ValidateScript are also used for workflow and escalations.
For more information, see the System Administrator Help.

You don't need to include statements or <script> tags. You can use the JavaScript this keyword
to refer to the object that triggers the code.

Example 1

1 if(this.value == 'Partner')
2 {
3 comp_revenue.disabled = 'true';
4 }

This example is a simple if statement for the comp_type field that disables another field if its
value is Partner.

Example 2

1 if(this.value.toUpperCase() == this.value)
2 {

Sage CRM 2023 R2 - Developer Guide Page 27 of 403

http://help.sagecrm.com/js-api/classes/caption.html
http://help.sagecrm.com/js-api/classes/caption.html

3 window.alert(this.name + ' has been entered all uppercase');
4 }

In this example, the OnChange script alerts the user to change an entry before validation is
triggered.

Validation scripts

When writing validation scripts that execute on the server, the following system variables can help
you trap information and provide feedback.

l Values(). Holds the inbound values of data coming into the system. It allows you to read
any variable in the QueryString in CreateScripts. You can test for the dominant key and
context.

var x = Values("Key0");
Valid = false;
ErrorStr = x;

l Valid. Determines whether the ErrorStr value should be displayed on the screen. The
default value is True. When set to False, it marks the current entry as invalid. Valid set to
False has the following behavior in different parts of the system:

l It displays an ErrorStr in create scripts and blocks the commitment of data in
validate scripts.

l It controls the display of workflow rule buttons in Primary, Transition, and Global
workflow rules.

l It causes a conditional rule to execute an alternative set of actions.

l In Table Level and Entity Level scripts that update records in response to an action,
it can set ErrorStr to the browser, or can block the entire transaction.

l ErrorStr. Returns the string in the error content bar at the top of the screen.

The following example validates a field value when a user is specifying details for an opportunity:

1 if (Values('oppo_type')="Mix")
2 {
3 Valid = false;
4 ErrorStr = 'This Mix type is temporarily not supported';
5 }

This script checks the value in the oppo_type field, and an action is taken if the opportunity type
is Mix. This script only validates the value of the specified field, other fields are ignored.

If the oppo_type field value is invalid (Valid = false), an error message (ErrorStr = 'This Mix

type is temporarily not supported';) is displayed in a red bar at the top of the screen.

Sage CRM 2023 R2 - Developer Guide Page 28 of 403

This example tests onscreen information only. You can use other blocks accessible through the API
to base validation on entity information not currently displayed onscreen. Also, the CRMEntryBlock

object's properties such as Required, ReadOnly, MaxLength, CreateScript, OnChangeScript, and
ValidateScript enable you to control and respond to values entered into a screen.

Using table-level scripting
You can use scripts to perform certain actions on individual fields when a record is inserted,
updated, or deleted.

l Table-level scripts are executed when a record is inserted, updated, or deleted on a
specified Sage CRM table.

l Entity-level scripts are executed when a Sage CRM entity is inserted, updated, or deleted.

You enter the scripts through the Sage CRM interface. For more information, see Table- and
entity-level scripts.

Generally, you'll respond to triggers using server-side scripts that leverage the API. The triggers
are: InsertRecord(), PostInsertRecord(), UpdateRecord(), and DeleteRecord().

Example: Client-side validation
This example accesses the DOM of a CRM generated web page to capture and validate events.

The client-side JavaScript performs basic validation by checking if the last name field in the
PersonSearchBox is empty before the search details are submitted to the server.

1 <script>
2
3 // Custom Content - personsearchbox add behaviour to the screen when it has finished loading.
4 crm.ready(function()
5
6 {
7 // Hide the Search button.
8 crm.hideButton("Search.gif");
9
10 // Add onChange event to the pers_lastname field so that the Search button is shown when a

value is entered in field.
11 $("#pers_lastname").change(function ()
12 {
13 if (this.value != '') crm.showButton("Search.gif")
14 });
15
16 })
17
18 </script>

Sage CRM 2023 R2 - Developer Guide Page 29 of 403

For more information about the methods used in this example (such as crm.ready,
crm.hideButton, and crm.showButton), see the Sage CRM Client-side API Help.

Example: Accessing user information
You can use client-side scripting to get information about the current user of the system. For that
purpose, you can use the CurrentUser variable that is provided in the HTML code on each Sage
CRM page.

This is available to the client through code contained in the include file, referenced as <!--
#include file ="sagecrm.js"-->. The supporting code parses the query string shown in the
browser's status bar to define the session ID that identifies the user.

The CurrentUser variable provides access to extensive information about the current user stored
in the following columns in the Users table in the Sage CRM database:

l user_userid

l user_primarychannelid

l user_logon

l user_lastname

l user_firstname

l user_language

l user_department

l user_resource

l user_externallogonallowed

l user_isterritorymanager

l user_per_user

l user_per_product

l user_per_currency

l user_per_data

l user_offlineaccessallowed

l user_per_customise

l user_minmemory

l user_maxmemory

l user_title

l user_location

l user_deskid

Sage CRM 2023 R2 - Developer Guide Page 30 of 403

http://help.sagecrm.com/js-api/

l user_per_infoadmin

l user_device_machinename

l user_per_solutions

l user_prf

The next example configures search options in a search screen according to the user's profile. All
users in the Telemarketing department deal with customers in Europe, so the code automatically
selects Europe from the Territories list when a member of the Telemarketing department accesses
this search page.

1 <script language="JavaScript">
2
3 var channeldept = CurrentUser.user_department;
4 window.attachEvent("onload", Populate);
5 function Populate()
6
7 {
8 if (channeldept=="Telemarketing")
9

10 {
11 var oSource = document.all.item("pers_secterr");
12 var dropdownloop = document.all.item("pers_secterr").length;
13 var setIndex = 0;
14 for (i=0;i<dropdownloop;i++)
15
16 {
17 checkText = oSource.options[i].text;
18 if(checkText.indexOf("Europe") != -1)
19
20 {
21 setIndex = i;
22 break;
23 }
24
25 }
26 document.all.item("pers_secterr").selectedIndex =setIndex;
27
28 }
29
30 else
31
32 {
33 document.all.item("pers_secterr").selectedIndex = 0;
34 }
35
36 }
37
38 </script>

The CurrentUser object ascertains the user's department. The information contained in
CurrentUser.user_department is stored in the variable channeldept.

The attachEvent method calls the Populate function when the page is loaded ("onload").

Sage CRM 2023 R2 - Developer Guide Page 31 of 403

The first line in the Populate event handler determines if the user's department is Telemarketing.
If it is, item from the all() collection of the Document object finds the pers_secterr field, which
is the drop-down list containing available territories. A more advanced solution could use a switch
statement to indicate a range of actions depending on a variable's value.

The subsequent if statement loops through list options to find Europe. The JavaScript method
indexOf checks whether the current option text contains Europe. If it does, the setIndex variable
is set and ensures that the Europe option is visible when the page is loaded.

Example: Getting information about installed
modules
You can use the ModuleCode variable that is provided in the HTML code on each Sage CRM screen
to get information about the modules installed on the system. The ModuleCode variable is defined
in the Eware.dll file.

To get information about the installed modules, locate the ModuleCode variable in the HTML code,
and then get its value.

The ModuleCode variable can take one of the following integer values:

l 1. Indicates that the Sales module is installed.

l 2. Indicates that the Service module is installed.

l 5. Indicates that the Sales and Marketing modules are installed.

l 7. Indicates that the Sales, Marketing, and Service modules are installed.

Example

1 <script>
2
3 if(ModuleCode & 1) alert('Sales module is installed');
4 if(ModuleCode & 2) alert('Service module is installed');
5 if(ModuleCode & 5) alert('Sales and Marketing modules are installed');
6 if(ModuleCode & 7) alert('Sales, Marketing, and Service modules are installed');
7
8 </script>

Gets the value of the ModuleCode variable and displays information about installed modules on
the screen.

Sage CRM 2023 R2 - Developer Guide Page 32 of 403

Customization
l Using ASP pages

l Using customizable areas

l Transferring customizations to another Sage CRM instance

For more information, see also Using .NET API.

Using ASP pages
To extend and modify system functionality, you can add a custom ASP page to CRM and display the
page on a user-defined tab.

The Extensibility Module (EM) supports ASP, JavaScript, and Document Object Model (DOM) and
provides a library of classes, methods, and properties.

The Block architecture serves as an SDK that allows you to use the CRM object, which is initialized
by standard CRM include files referenced at the top of a custom file. The CRM object allows you to
initialize further blocks that build up the screen interface, generate lists, manipulate database
records, and modify scripts.

CRM blocks reside on the install server. Code using the CRM SDK typically runs on the server
before the compiled page is dispatched to the client. ASP is used for server-side coding, as it's
supported by IIS and provides six built-in objects that help you create dynamic web pages.

When a page has been downloaded from the server and displayed in the CRM system, you can use
client-side JavaScript and the DOM to handle data and respond to user-generated events.

You can include server-side and client-side scripts in the same ASP file. Use server-side ASP code
to access CRM Block functionality. Use client-side JavaScript for immediate responses to user
actions and to access the DOM to navigate the screen interface.

Using customizable areas
To customize the following areas, use the system interface to enter scripts and change settings.

Sage CRM 2023 R2 - Developer Guide Page 33 of 403

Customizable area Without
Extensibility Module

Additional customization
with Extensibility Module

Fields Create new fields and
customize existing fields.

None

Screens Customize existing screens in
the Sage CRM database. Add
and remove fields that were
created in the system.

Add new screens.

Lists Customize existing lists in
the Sage CRM database.

Add new lists.

Tabs Add new tabs to tab groups in
the Sage CRM database.
Customize main menu
buttons.

l Add new tab groups.

l Link tabs to custom
files or URLs.

l Link tabs to runblock
and runtabgroup
functionality.

Views Add new views. Change
existing views.

None

Blocks None Add Blocks.

Table Scripts None Add Table and Entity Scripts.

Tables and Databases None l Connect to a new table.

l Connect to a new
database.

l Create a new table.

Button Groups None Add new button groups.

Component Manager Upload a component. Record and script
components.

Sage CRM 2023 R2 - Developer Guide Page 34 of 403

Transferring customizations to another Sage CRM
instance
You can transfer customizations made on one Sage CRM instance to another instance of Sage CRM.
To transfer your customizations, complete the following steps:

l Step 1: Save customizations in a component

l Step 2: Generate script files

l Step 3: Apply customizations to the target system

You can transfer virtually any changes that you make in the <My Profile> | Administration |
Customization area of Sage CRM. The table below lists the customizations that you can and
cannot transfer between two instances of Sage CRM.

Sage CRM 2023 R2 - Developer Guide Page 35 of 403

You can transfer You cannot transfer

l Field customizations

l Field security where the update applies
to Everyone

l Screen customizations including field
level scripting and custom content

l View customizations

l List customizations

l Tab customizations including system
menus and menu buttons

l Block customizations including
Dashboard blocks

l Table script customizations

l Translations including inline translation
mode, field customization method, and
translations list method

l Reports including creation of new
reports and modification of existing
reports

l Most workflow customizations

l Button groups

l Table and database connections

l Interactive dashboards
You can only record Interactive
Dashboard customizations if the data
sources, users, and channels are
identical in the source and target Sage
CRM systems. For example, if you script
a dashboard gadget based on a saved
search, the saved search must exist in
the target Sage CRM system for the
gadget to work on the dashboard.

l Field security other than where the
update applies to Everyone

l Field deletions

l Products

l Currencies

l Configuration settings

l User data

l Workflow escalation rules

l Territory changes

l Related entities

l Security profiles

Related ASP pages are transferred automatically only if they are directly referenced in your
customization (for example, on a newly created tab). However, when an ASP page is updated, or
when a file that's indirectly referenced is added (for example, an include file in an ASP page), you
must manually copy these files to the component folder.

Sage CRM 2023 R2 - Developer Guide Page 36 of 403

Step 1: Save customizations in a component

In this step, you configure the Component Manager, a feature of Sage CRM, to save the
customizations you want to transfer to another Sage CRM instance in a component. When you save
customizations in a component, they are marked in the Sage CRM database with the name of that
component. Then, you can use the created component to generate a set of script files containing
your customizations and use these files to apply your customizations to another Sage
CRM instance.

There are two methods to save your customizations in a component:

l Method 1: Record your future customizations. Use this method if you haven't yet made
the customizations you plan to transfer to another Sage CRM instance. This method involves
a number of steps you need to complete before you start customizing Sage CRM.

l Method 2: Retrieve existing customizations. Use this method if you want to transfer
customizations already applied to Sage CRM. With this method, you can configure criteria
to retrieve specific customizations from the Sage CRM database and save them in a
component. For example, you can retrieve customizations made by a specific Sage
CRM user, within a certain date range, or both.

Method 1: Record your future customizations

1. Create a new component to record your future customizations:

a. Go to <My Profile> | Administration | Customization | Component Manager |
Component Details.

b. Click New, and then use the following options:

l Component Name. Enter the component name.

l Description. Enter an informative description for the component.

l Set to Be Current Component. Select this check box to set the new
component as current. The Component Manager always uses the current
component to record your customizations. You may be prompted to script the
current component before setting your new component as current. If you do
not script the current component, you may lose the customizations recorded
previously.
To script the current component, in the message box that opens, click
Cancel.

2. Click Save to save your new component.
Now you can make your customizations.
When you are done, generate script files from your component as described in Step
2: Generate script files.

The component is set as current and listed under Existing Components. The current component
automatically records all your customizations even if they span several days and you log in and out

Sage CRM 2023 R2 - Developer Guide Page 37 of 403

of Sage CRM during that period. The screens you customize are labeled with the name of the
current component that records your customizations. The current component records your
customizations until you stop the Component Manager or set a different component as current.

You can stop and resume the recording as described in Stopping and resuming recording to
record only what you need.

Stopping and resuming recording

You can stop and resume the recording to record only the customizations you need.

To stop the recording:

1. Go to <My Profile> | Administration | Customization | Component Manager |
Component Details.

2. Click Stop Component Manager.
This button is only available when the Component Manager is recording your
customizations.

To resume the recording:

1. Go to <My Profile> | Administration | Customization | Component Manager |
Component Details.

2. Click Start Component Manager.
This button is only available when the Component Manager is stopped.

Changing the current component

All customizations you make are recorded against the current component. If necessary, you can
change the current component.

1. Go to <My Profile> | Administration | Customization | Component Manager |
Component Details.

2. Under Existing Components, click to select the component you want to set as current.

3. Click Set To Be Current Component.

4. If you are recording another component, you are prompted to script the current component
before setting a new component as current.
To script the current component, in the message box that opens, click Cancel.

Method 2: Retrieve existing customizations

You can configure criteria to retrieve existing customizations from the Sage CRM database and
copy them to your new component. Then, you can use that component to generate script files and
apply your customizations to another Sage CRM instance. For example, you can configure criteria
to retrieve customizations created or updated by a particular user, within a certain date range, or

Sage CRM 2023 R2 - Developer Guide Page 38 of 403

both. Optionally, you can search a particular existing component for the customizations that satisfy
your criteria.

Use this method with caution, because the customizations you retrieve and save in your new
component are removed from all the existing components where they were stored previously.

1. Go to <My Profile> | Administration | Customization | Component Manager |
Component Details.

2. Click Advanced Options, and then use the following options to create a new component:

l Enter New Component Name. Enter the component name.

l Description. Enter an informative description for the component.

3. Under Selection Criteria, specify criteria to search for and retrieve the customizations
you want to transfer to another Sage CRM instance.
You can use the following options:

l Select And or Or to join the selection fields. Select an operator to join your
criteria.
If you select And, all your criteria must be true for the customization to be
retrieved and saved in your component.
If you select Or, any your criterion must be true.

l Select to include Existing Component. Optional. Select the existing component
you want to search for the customizations you want to transfer to another Sage
CRM instance.

l Created date. Retrieves customizations that were created within the date range you
specify. You can specify an absolute or relative date range.

l Updated date.Retrieves customizations that were updated within the date range
you specify. You can specify an absolute or relative date range.

l Created by. Retrieves customizations created by the user you specify.

l Updated by. Retrieves customizations updated by the user you specify.

4. Click Mark Component.
As a result, the Component Manager searches for the customizations that satisfy your
criteria. If such customizations are found, they are retrieved and saved in your new
component.
If these customizations were previously stored in any existing components, you are
prompted to move them to your new component. To move customizations, click Mark
Component once more.
After you move the customizations to your new component, they are deleted from other
components.

Now you can generate script files from your new component as described in Step 2: Generate
script files.

If necessary, you can set your new component as current and record any additional future
customizations. For more information, see Changing the current component.

Sage CRM 2023 R2 - Developer Guide Page 39 of 403

Step 2: Generate script files

Once you have saved customizations in a component as described in Step 1: Save
customizations in a component, use that component to produce a set of script files. You can
then use these files to apply your customizations to the target Sage CRM system. The process of
generating script files from a component is called scripting.

To generate script files from your component:

1. Go to <My Profile> | Administration | Customization | Component Manager |
Component Details.

2. Under Existing Components, click to select the component that contains the
customizations you want to transfer to another Sage CRM instance. You can view additional
information about each component as described in Viewing component details.

3. Select one of the following formats for the output files:

l Sage CRM Script (.es) file. Use this format to transfer your customizations to
another instance of Sage CRM. This file stores your customizations as JavaScript.
The human-readable comments provided in the file describe what has been
customized.
To use this format, leave the Export as xml check box cleared.

l Extensible Markup Language (.xml) file. Use this format in scenarios that
involve integration with other applications. Note that you cannot use this format to
apply your customizations to another instance of Sage CRM.
To use this format, select the Export as xml check box.

To preview the customization script you are about to generate, click Preview Script. When
you are finished, click Continue.

4. Click Script Component.

5. On the screen that opens, use the following options:

l File Name. Enter the name for the output script file you want to generate. If you've
already scripted the current component, enter a new file name.

l Description (optional). Enter an informative description for the file. This optional
information is saved in the corresponding Sage CRM Component (.ecf) file. For
example, a description can remind you of customization changes you made in a
particular implementation before you apply them to the target Sage CRM system.

6. Click Script Component to generate the script files.
The screen that opens shows the names and locations of these files.
Optionally, you can modify the generated script files as described in Modifying script
files.

7. Add the generated script files to a .zip archive.
Now you need to apply your customizations as described in Step 3: Apply customizations
to the target system.

Sage CRM 2023 R2 - Developer Guide Page 40 of 403

On a Sage CRM computer, you can find the generated script files in

%ProgramFiles(x86)%\Sage\<InstallPath>\<InstallName>\inf

The inf folder holds the Sage CRM Component (.ecf) file and the component folder named after
the component. The component folder contains the Sage CRM Script (.es) file and any other
corresponding files, for example, ASP pages. To transfer your customizations, make sure to add all
these files to the .zip archive.

The Component Manager automatically copies files stored in the CustomPages folder of Sage
CRM only if these files are included in a tab group with the customfile action. If your
customization files include other files such as .asp, .dll, .txt, .js, or .inc, manually copy them into
the component's CustomPages folder when the component scripting is finished.

On a Sage CRM server, you can find the CustomPages folder in the following location:

%ProgramFiles(x86)%\Sage\<InstallPath>\<InstallName>\WWWRoot

Viewing component details

For each component, you can view such information as component name, description, created date,
who created the component, whether the component is set as current, and when the component was
scripted last time. Optionally, you can change the component description.

1. Go to <My Profile> | Administration | Customization | Component Manager |
Component Details.

2. Under Existing Components, click to select the component whose details you want to
view.

3. Click View Details.
The screen that opens shows the component details. You can optionally click Change to
modify the component description.

Previewing script files

Before generating the customization script from a component, you can preview that script.

1. Go to <My Profile> | Administration | Customization | Component Manager |
Component Details.

2. Under Existing Components, click to select the component for which you want to preview
the customization script.

3. Click Preview Script.
When you are finished, click Continue to return to the Component Details tab.

Modifying script files

You can modify the Sage CRM Component (.ecf) and Sage CRM Script (.es) files generated by the
Component Manager:

Sage CRM 2023 R2 - Developer Guide Page 41 of 403

On a Sage CRM server, you can find these files in:

%ProgramFiles(x86)%\Sage\<InstallPath>\<InstallName>\inf

For example, you can specify additional parameters in the .ecf file or modify JavaScript in the .es
file to do the following:

l Make a component usable in multiple installations

l Change screen names

l Add messages

l Copy ASP pages and other files from one location to another

l Create new tables

l Add new columns

l Search for and replace words in ASP pages

l Modify reports

l Add the following views:

l IDatabase. Returns the current Sage CRM database.

l ILocale. Returns the installed locale. IWestern and IJapanese are two constants that
can be returned.

l sViewText. Provides a temporary storage buffer when scripting views.

Variable and constant names are case sensitive and can be used for any component APIs.

Make sure you order your code correctly when modifying the Sage CRM Script (.es) file. For more
information, see Observing referential integrity.

When modifying scripts, you can pass the following parameter types to the .es script file:

l TEXT

l CHECKBOX

l MULTITEXT

l PASSWORD

l INTEGER

l SELECT

l DATETIME

l DATE

Create a parameters section in the .ecf file with the keyword Params: and put the parameters on
separate lines beneath the keyword in the following format:

<Parameter Type>
<Attribute=Value>,<Attribute=Value>,<Attribute=Value>

Sage CRM 2023 R2 - Developer Guide Page 42 of 403

Example

1 Params:
2 TEXT Name=ServertName,Caption=Enter server name,Required=True
3 CHECKBOX Name=IncludeThis,Default=On,Caption=Include extras
4 PASSWORD Name=Password
5 INTEGER Name=NumUnits,OnChange=alert('You have entered'+NumUnits.value+' units.');

When you install the component, the fields are displayed on the Parameter Info screen with the
attributes you specified. To use the values entered, call the Param() method in the .es script file.
For example, to retrieve the value in the Enter Server Name text box, call Param(ServerName) in
the .es script file.

You can specify the following attributes for each parameter:

Attribute Required Description

Name Yes Specifies the field name.

You can use this attribute
with the Param function to
return the value entered by
the user on the Parameter
Info screen.

Default No Specifies the default value
for the parameter.

NewLine No Allows you to specify the line
on which to place the
parameter.

This attribute can take one of
the following values:

l False. Specifies to
keep the parameter on
the same line as the
previous one.

l True (default).
Specifies to place the
parameter on a new
line.

Rows No Specifies the number of rows
that the parameter spans. The
default value is 1.

Sage CRM 2023 R2 - Developer Guide Page 43 of 403

Attribute Required Description

Cols No Specifies the number of
columns that the parameter
spans. The default value is 1.

Required No Specifies if the parameter is
required.

This attribute can take one of
the following values:

l True. Specifies that
the user must enter a
value for the
parameter.

l False. Specifies that
the parameter is
optional.

Validation is done when the
user clicks Install
Component.

ReadOnly No Specifies if the parameter is
read-only.

This attribute can take one of
the following values:

l True. Specifies that
the parameter is read-
only.

l False. Specifies that
the parameter is
writable.

Size No Specifies the maximum
length of the field that
contains the parameter value
(in characters). The default
value is 20.

This attribute is only
applicable to parameters of
type TEXT.

Sage CRM 2023 R2 - Developer Guide Page 44 of 403

Attribute Required Description

MaxLength No Specifies the maximum
number of characters in the
parameter value. The default
value is 40.

Caption No Specifies the text label
(caption) for the user
interface field that shows the
parameter value.

CaptionPos No Specifies the position of the
text label (caption) relative to
the field that shows the
parameter value.

OnChange No Specifies JavaScript to run
when a user changes the
value in the field.

Attribute=Family No Specifies what caption family
to use to get the drop-down
list.

This attribute is only
applicable to parameters of
type SELECT, this specifies .

Observing referential integrity

The architecture implemented in Sage CRM 7.0 and later facilitates the Interactive Dashboard. To
allow the persistence of the Meta Data Model within this architecture, make sure you observe strict
referential integrity within Sage CRM metadata tables.

This means you must correctly order the code in components in the Sage CRM Script (.es) file. For
example, you can't add a view if the table the view is based on hasn't already been added.

The following is a list of custom table dependencies:

l Custom_Edits - (Custom_Tables)

l Custom_Views - (Custom_Tables)

l Custom_ScreenObjects - (Custom_Tables, Custom_Views[optional])

l Custom_Lists - (Custom_ScreenObjects, Custom_Edits)

l Custom_ContainerItems - (Custom_ScreenObjects x2)

Sage CRM 2023 R2 - Developer Guide Page 45 of 403

l Custom_Tabs - (Custom_ScreenObjects)

l Custom_Screens - (Custom_ScreenObjects, Custom_Edits)

l FieldSecurity - (Custom_Edits)

l UserSettings - (Users)

l TerritoryPermissions - (Custom_Tables ,Users, TerritoryProfiles, Territories)

l Channel_Link - (Users, Channel)

l Users - (Channel, TerritoryProfiles, Territories)

You cannot use the AddCustom_Data or RunSQL method to update the tables listed above, as the
foreign keys are not set automatically. Use the table appropriate method instead. For example, to
update Custom_Edits use AddCustom_Edits.

Setting how to handle script errors

By default, when you use the Sage CRM Script (.es) file to transfer your customizations, all script
errors are handled in the following manner:

Whenever an error occurs, the script keeps running and applies all other changes specified in the
.es file.

You can change this default behavior and configure your script to roll back all changes already
made whenever an error occurs. To do so, add the errorhandling=strict line to the corresponding
Sage CRM Component (.ecf) file.

Example

1 Description=My component
2 Directory=My component
3 Version=7.3
4 errorhandling=strict

Scripting multi-stage customizations

When using the Component Manager to record your customizations, you can create multiple sets of
files, each containing specific changes. For example, you can use this method to record complex,
multi-stage customizations and then apply them to the target Sage CRM system in stages.

1. Create a new component and set it as the current component.

2. Save it and begin making customization changes. When you want to script your changes,
click Script Component.

3. Enter a name for the scripted component files in File Name and enter a description in
Description.

Sage CRM 2023 R2 - Developer Guide Page 46 of 403

4. Click Script Component and then click Continue.The component name you originally
specified is still the current component on the Component Details page.

5. Make additional customization changes. These changes are recorded as part of the current
component, in addition to changes you've already recorded and scripted.

6. Specify a new file name and click Script Component. The generated component files
contain the changes you made in the first part of the customization and your recent
changes. You can continue to script changes in this way as many times as you need to, but
you must use a different, meaningful file name each time you script.

7. When you've fully completed the customization, perform a final scripting, keeping the
current component name in File Name. You should always script the current component
before beginning a new customization.

8. When you're installing the script to the second Sage CRM system, select Apply All
Changes to install all changes in the final version of the component.

Code samples

This section provides examples of how to modify your scripts to do the following:

l Enabling a component for multiple installs

l Changing a screen name

l Adding a message

l Copying an ASP page

l Replacing text in an ASP page

l Creating a new table

l Adding a new column

l Using the DataFile object

l Adding a new view

Enabling a component for multiple installs

You can specify that a component can be used for multiple installs. This is useful if you install a
component, make further customization changes, and then want to undo them. Rather than undoing
the changes manually, you can reinstall the component on a clean Sage CRM install.

1. Open the .ecf file and add the following code:

multipleinstalls=y

2. Save the file.

Sage CRM 2023 R2 - Developer Guide Page 47 of 403

Changing a screen name

This example changes a screen name from DemoScreen1 to Demo.

1. Open the .ecf file and enter the following:

2.

Params:
Text Name=ScreenName,Caption=Type new screen name here,Required=True

Open the .es script file and change the following script.

From:

AddCustom_ScreenObjects('DemoScreen1','Screen','Opportunity', 'Y','0','','','');

To:

AddCustom_ScreenObjects(Param('ScreenName'),'Screen','Opportunity', 'Y','0','','','');

3. Save both files and install the component.

4. Enter Demo in Screen Name on the Parameter Info screen. For more information about
adding fields to this screen, see Modifying script files.

5. Click Continue. When you install the component, DemoScreen1 is renamed to Demo and the
record is added to the custom ScreenObjects table.

Adding a message

This example adds a message to the end of an installation.

1. Open the .ecf file and enter the following.

Params:
Text Name=EntityName,Caption=Enter new name

2. Open the .es script file and add the following script.

AddMessage('A new screen called '+Param('EntityName')+' was installed into CRM.');

3. Save both files and install the component.

Sage CRM 2023 R2 - Developer Guide Page 48 of 403

4. Enter Demo in Screen Name on the Parameter Info screen. For more information about
adding fields to this screen, see Modifying script files.

5. Click Continue. When you install the component, the following message is displayed at the
end of the installation: A new screen called Demo was installed into CRM.

Copying an ASP page

You can copy an ASP page from one location to another.

1. Open the .es script file and add the following script.

CopyAspTo('custompages\\subfolder\\edit.asp','custompages\\subfolder\\edit.asp');

2. When you install the component, EDIT.ASP is copied from the Phase1 component directory
to the following location in the current installation: \custompages\subfolder\edit.asp.

Replacing text in an ASP page

You can search for and replace text in an ASP page.

1. Open the .es script file and add the following script.

SearchAndReplaceInFile('Edit.asp','Find','Search');

2. When you install the component, any instances of the word Find in the file Edit.asp are
replaced with the word Search.

Creating a new table

1. Open the .es script file and add the following script.

CreateTable('DemoTable','dem','demo','false','false','false');

2. When you install the component, a table called DemoTable is added to Sage CRM. The
following columns are automatically created for the table:

l Dem_TableId

l Dem_ System

l Dem_ CreatedBy

l Dem_ CreatedDate

l Dem_ UpdateBy

l Dem_ UpdateDate

Sage CRM 2023 R2 - Developer Guide Page 49 of 403

l Dem_ TimeStamp

l Dem_ Deleted

Adding a new column

1. Open the .es script file and add the following script.

AddColumn('DemoTable','Dem_Description',10,'(25)','True','False');

2. When you install the component, a column called Dem_Description is added to the
DemoTable created in Creating a new table.

Using the DataFile object

This example uses the DataFile object to loop through the rows in a spreadsheet and perform
actions with the values found.

Open the .es script file and add the following script.

var MyFile = FileOpen('c:\\data\\mydata.xlsx');
var i = 0;
while (!MyFile.EOF)
{
 i = 0;

while (i < MyFile.FieldCount)
{

 sValue = MyFile.GetField(i);
//do something with value

 i++;
 }
 MyFile.NextRow();
}

Adding a new view

This component script adds a view. It uses the iDatabase variable. Open the .es script file and add
the following script.

sViewText="CREATE VIEW vMyPhone AS SELECT";
if (iDatabase == IOracle)
{
 sViewText = sViewText + " Phon_CountryCode || N ' ' ||Phon_AreaCode || N ' ' || Phon_Number";
}
else
{
 sViewText = sViewText + " RTRIM(ISNULL(Phon_CountryCode, '')) + ' ';
 sViewText+= "RTRIM(ISNULL (Phon_AreaCode, '')) + ' ' + RTRIM(ISNULL(Phon_Number, ''))";
}
sViewText +=" AS Phon_FullNumber, Phone.* FROM Phone ";
sViewText += "LEFT JOIN Custom_Captions ON Phon_Type = Capt_Code WHERE";

Sage CRM 2023 R2 - Developer Guide Page 50 of 403

sViewText += " Phon_Deleted IS NULL";
AddView("vMyPhone", "Phone", "This selects all of the phone numbers", sViewText, false, false,
false, false, false

Step 3: Apply customizations to the target system

In this step, you use the .zip file prepared in Step 2: Generate script files to apply your
customizations to the target Sage CRM system. Note that your .zip file may contain script files for
more than one component.

To apply your customizations, do the following:

l Step 1: Upload component from the .zip file

l Step 2: Install component

Step 1: Upload component from the .zip file

1. Log on to the target Sage CRM system as a system administrator.

2. Go to <My Profile> | Administration | Customization | Component Manager |
Components.

3. Under Add Component, specify the .zip file you prepared in Step 2: Generate script
files.

4. Click Upload New Component.

Step 2: Install component

1. Under Available Components, click to select the component you have just uploaded.
You can click View Details to view additional information about the component.

2. Click Install Component.

l If you didn't modify the script to include parameter information, ignore the
message stating "No parameter information found in [component name]". For more
information about adding parameter information, see Modifying script files.

l If you included parameters, complete the fields on the Parameters, Step 1 of 2
screen. Click Install Component to continue installing the component. The
Parameters, Step 1 of 2 page might appear without fields, but with information
about the component you're installing.

3. Click Preview Install to view the script that's executed when the component is installed
and a prediction of whether each step will be successful.

4. Select Yes or No in Apply All Changes. These options apply to changes made by previous
components to the objects that are being changed by the current component.

Sage CRM 2023 R2 - Developer Guide Page 51 of 403

l To install everything in the component and overwrite any changes from previous
components, select Yes.

l To preserve changes from previous components, select No. Select No only when you've
a specific reason for doing so as it may result in your component being only partially
installed.

5. Click Install. Component Manager loads the new information, recreates the views, and
reloads the metadata. When the Component Installed message appears, you can view the log
file that has been generated. Otherwise click Continue to return to the Components tab.

When the component installation completes, you can view the component installation log to see
the changes made or issues encountered during the installation.

Considerations for transferring workflows

When applying customizations to the target Sage CRM system, consider the following:

When... And you transfer customizations to
target...

Workflow with the same name exists both in
source and target.

Workflow from source overwrites the workflow
in target.

Exception: Deleting workflow rules or states
in source does not affect the corresponding
rules or states in target.

Workflow only exists in source. Workflow is created in target.

Workflow only exists in target. Workflow is left intact.

Viewing component installation log

A log file is automatically generated when you install a component. The log file is saved as a
Comma-separated Values (.csv) file.

To view the component installation log, do the following:

1. Wait until component installation completes, and then click View Log File to download
the corresponding log file.

2. Open the downloaded .csv file.

Alternatively:

1. Go to <My Profile> | Administration | System | Logging.

2. From Select log files, select Component Install Logs.

Sage CRM 2023 R2 - Developer Guide Page 52 of 403

3. In the View Log table column, click the icon to download the corresponding log file.

4. Open the downloaded .csv file.

The log file contains two columns and a row for each action attempted during the component
manager installation. The first column contains one of the following values:

l OK. Indicates that the action completed successfully.

l Overwrite. Indicates that the action overwrote a previous change.

l Fail. Indicates that the action failed.

The second column contains the script command that was run.

Sage CRM 2023 R2 - Developer Guide Page 53 of 403

Sage CRM 2023 R2 - Developer Guide Page 54 of 403

Objects and blocks

l Objects

l Blocks

l Lists

l Screens

l Buttons

l Classic Dashboard

l Customizing the Interactive Dashboard

l System menus

l Tabs

l Adding Help to custom pages

Sage CRM 2023 R2 - Developer Guide Page 55 of 403

Objects
Sage CRM object Description

Dispatch Controls all web requests and responses, finds the
relevant UserSession, and sets the session keys. User
requests are sent to the application's Web module, which
creates an object to process the request, and output the
relevant response. You can't access the Dispatch object
because it's internal to Sage CRM.

CRM Provides basic access to Sage CRM objects and
functionality. Use the methods of this object to create
new objects, get existing objects, and execute objects.

CRMBase Provides functionality that's only applicable in the Sage
CRM environment, such as the current company. This
object is often used to set up the current context
information for the current view and to display tabs that
apply to that view.

CRM TargetLists Used to create target lists also known as groups in Sage
CRM 7.2 and later. To ensure that legacy code works with
new installations, the term target lists is maintained in
the API terminology.

CRM TargetListFields A container for a list of TargetListField objects.

CRM TargetListField Fields that are displayed on a target list.

CRMSelfService Contains methods and properties that enable self service
users to access relevant information from the Self
Service web site.

MsgHandler Used to customize scripts deployed by E-mail
Management. It provides access to the Email Object.

Email Used to customize scripts deployed by E-mail
Management. It provides access to the email.

AddressList Used to customize scripts deployed by E-mail
Management. It provides access to To, CC, and BCC lists
of addresses.

Sage CRM 2023 R2 - Developer Guide Page 56 of 403

Sage CRM object Description

Mail Address Used to customize scripts deployed by E-mail
Management. It provides access to individual addresses
from the AddressList object.

AttachmentList Used to customize scripts deployed by E-mail
Management. It provides access to email attachments.

Attachment Used to customize scripts deployed by E-mail
Management. It provides access to individual email
attachments from the AttachmentList object.

CRMRecord Represents records in a table. An enumerator that
returns all the specified fields in a table. Use the
CreateRecord or FindRecord methods to get the record.

CRMQuery object Enters and executes SQL statements against a known
CRM database. Used to perform more powerful queries
than is possible with the CRM Record object.

CRMBlock object The base of all CRM blocks. This block determines the
actual implementation of each CRMBlock method and
property.

CRMContainerBlock object Used to group other blocks on a screen. This block
contains the standard Sage CRM buttons. You can
configure workflow buttons on the screens where they'll
be displayed. An example of a container block is a
linked search panel and related list.

CRMEntryGroupBlock object Used to group entries to create a screen. You can
generate many types of entry group, such as a Company
Search Box, a Person Entry Box, and a Case Detail Box.
This block contains the standard Sage CRM buttons.

CRMListBlock object Generates a custom list from columns in a Sage CRM
table, or a table connected to Sage CRM through <My
Profile> | Administration | Advanced
Customization | Tables And Databases.

CRMEntryBlock object Corresponds to a single field that's displayed or edited
on screen. You can generate many entry types, such as
text blocks, multi-select boxes, and currency input boxes.
You typically add Entry blocks to EntryGroups or
Containers. Use JavaScript scripts on these blocks to
perform tasks when they load, change, or are validated.

Sage CRM 2023 R2 - Developer Guide Page 57 of 403

Sage CRM object Description

CRMGridColBlock object Corresponds to a single column in the List block. Use
the GridCol block to change properties on individual
columns in a list.

CRMMarqueeBlock object Adds scrolling text to a page. The content of the text is
maintained through <My Profile> | Administration |
Customization | Translations. Use the properties of
this block to control the direction, speed, and style of
the scrolling text.

CRMFileBlock object Provides access to external files that aren't part of Sage
CRM and enables files to appear as if they are part of
Sage CRM.

CRMMessageBlock object Allows you to send messages in email and SMS format.
Include this block in ASP pages to display a simple
email form or to automate the message sent in response
to a certain event.

CRMContentBlock object A simple block that takes a string of content (text) and
displays it on the page. Used to write out a line of HTML
to the browser.

CRMGraphicBlock object Displays images through an ASP page. Use variables to
represent live data from a database or incorporate
details of the current user, such as user privileges or
settings.

CRMChartGraphicBlock object Displays a variety of charts which can be generated from
data retrieved using SQL or added through an ASP page.
It inherits all the functionality of the Graphics block.

CRMOrgChartGraphicBlock object An implementation of the Graphics block used for
organizational charting. These charts may depend on
data retrieved through SQL or added through ASP. It
inherits Graphics block functionality.

CRMPipeLineGraphicBlock object Creates cross-section diagrams representing data from
an ASP page or stored in a table. It inherits Graphics
block functionality.

Sage CRM 2023 R2 - Developer Guide Page 58 of 403

Blocks
l About blocks

l Referencing block names

l Creating a block

l Customizing a block

l Displaying a block

About blocks
You need the Extensibility Module (EM) to create and customize blocks in <My Profile> |
Administration | Customization | <Entity> | Blocks.

All lists, screens, and fields that you create are blocks within the system (ListBlock,
EntryGroupBlock, and EntryBlock). New blocks must be based on an existing standard CRM block. Fo
example, Container, EntryGroup, or Marquee. Associate all new blocks with the entity to which they
relate.

You can create and display new blocks of data from external tables and databases to which Sage
CRM is connected. For more information about customizing tables, see Database.

When you create a new block, you can reference and run it from Sage CRM and in ASP pages.

Referencing block names
Once you've determined the exact name of a block, you can call it from an ASP page. There are
several types of block names.

Sage CRM 2023 R2 - Developer Guide Page 59 of 403

Block name type Description

Generic name of the block All blocks are based on a CRM basic block
type.

To reference CRM generic block names, go to
<My Profile> | Administration |
Customization | <Entity> | Blocks and click
New.

The custom block names are listed in Block
Type.

The block names correspond to the main block
names in the CRM block hierarchical diagram.
All other blocks are based on one of these
block types.

Name of any custom screen (Entry block) A standard installation includes a number of
predefined custom screens that you can
manipulate or copy.

To reference predefined custom screen names,
go to <My Profile> | Administration |
Customization | <Entity> | Screens.

The screen names are displayed in Screen
Caption.

Alternatively, reference the name from the
Custom Tables in your database. For example,
if you're using SQL Server, the block names are
in the database in Enterprise Manager.

Name of any custom list (List block) A standard installation includes a number of
predefined custom lists that you can
manipulate or copy.

To reference predefined custom list names, go
to <My Profile> | Administration |
Customization | <Entity> | Lists.

The list names are displayed in List Name.

Alternatively, reference the name from the
Custom Tables in your database.

Name of any block that you have created You can create your own blocks from the
system interface.

Sage CRM 2023 R2 - Developer Guide Page 60 of 403

Creating a block
All new blocks you create in CRM must be based on Sage CRM custom blocks. You can then
customize the properties of the block.

You can customize any lists or screens that you create by creating a block from the list or screen
and editing the properties of the block. These blocks are also available for use within ASP pages.

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Customization | <entity> | Blocks.

3. Click New.

4. Enter the block name in Block Name. This is the name you use to reference the block in
ASP pages.

5. Enter the block type in Block Type.

6. To copy an existing block, select it from Copy Existing Block.

7. Select the screen or list with which the new block is associated from Use Group.

8. Click Save. The new block appears in the list of available blocks for the entity.

To access the new block within an ASP page, use the GetBlock(BlockName) method. The object
returned by the GetBlock(BlockName) includes the specified properties.

You can also create a block in an ASP page linked to CRM. For more information, see Creating an
ASP page.

Customizing a block
You can change the properties of an existing block or specify the properties of a new block.

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Customization | <entity> | Blocks.

3. Click the block you want to customize. The available properties depend on the block type.
For more information, see ASP objects.

4. Enter new properties or change the existing ones.

5. Click Save.

Sage CRM 2023 R2 - Developer Guide Page 61 of 403

Displaying a block
You can display a new block on a new tab using runblock to directly run the block. You can run
Content, Marquee, Message, and Chart blocks using runblock. You can also run any EntryGroupBlock
based on a current entity screen using runblock.

Alternatively, you can display a new block on a new tab using customfile to link to an ASP page
that references the block.

Lists
l Creating a list

l Customizing a list

l Displaying a list using runblock

l Displaying a list using an ASP page

Creating a list
You can create a new list in Sage CRM from columns in existing tables or external tables
connected to CRM.

1. Log on to Sage CRM as a system administator.

2. Go to <My Profile> | Administration | Customization | <Entity> | Lists.

3. Click New.

4. Enter the list name in Name. This is also the block name that you use to reference the list
in ASP pages.

5. Enter the table or view that contains the list columns in Table or View to Select Fields
From.

6. Enter the name of the filter box used to search the list in Filter Box Name.

7. Click Save. The new list is displayed.

You can also create a list in an ASP page linked to CRM. For more information, see Creating an
ASP page.

Sage CRM 2023 R2 - Developer Guide Page 62 of 403

Customizing a list
1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Customization | <Entity> | Lists.

3. Click the list you want to customize.

4. Make your changes and click Save.

For more information about customizing lists, see the System Administrator Help.

Displaying a list using runblock
You can display a list directly from a new tab using the runblock tab action. The tab group to
which you add the list must be the tab group for the entity on which the list is based. This ensures
that when the block is used, it maintains the context for the current entity.

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Customization | <entity> | Tabs.

3. Click the tab group to which you want to add the tab.

4. Enter the tab name in Caption.

5. Select runblock from Action.

6. Enter the list name in Block Name.

7. Click Add and then Save.

To view the list, click the new tab.

Displaying a list using an ASP page
You can display a list created from an ASP file by linking to the file from a custom tab. This
option lets you set the properties of the list before displaying it.

1. Create your .asp file and add it to Sage CRM. For more information, see Creating an ASP
page and Adding an ASP page to Sage CRM.

2. Log on to Sage CRM as a system administrator.

3. Go to<My Profile> | Administration | Customization | <Entity> | Tabs.

4. Click the tab group to which you want to add the tab.

Sage CRM 2023 R2 - Developer Guide Page 63 of 403

5. Use the following options:

l Caption. Enter a name for the tab.

l Action. Select customfile.

l Custom File. Enter the name of your .asp file.

6. Click Add and then click Save.

To view the list, click the new tab.

Screens
l Creating a screen

l Customizing a screen

l Displaying a screen using runblock and screen name

l Displaying a screen using runblock with a custom block

l Displaying a screen using an ASP page

Creating a screen
You can create a new screen in Sage CRM from columns in existing tables or external tables
connected to CRM.

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Customization | <Entity> | Screens.

3. Click New.

4. Select a screen type from Screen Type.
If you select Search Screen, an additional field called Associated List is displayed on the
New Screen Definition page which allows you to associate a list with the screen.

5. Enter the name of the screen in Screen Name. This is the name used to reference the
screen in ASP pages.

6. Enter the actual name that's displayed on the screen in Screen Caption.

7. Enter the name of the view that contains the screen fields in Associated View.

Sage CRM 2023 R2 - Developer Guide Page 64 of 403

8. If you're using fields from a foreign table, do the following:

a. Enter the table name in Foreign Table.

b. Specify the column that uniquely relates the foreign table to the Sage CRM table in
Foreign Table Column.
This column has a corresponding field on the Sage CRM table.

9. Click Save.

You can create a block from the new screen and use the block properties to customize the
appearance of the screen.

You can also create a screen in an ASP page linked to CRM. For more information, see Creating an
ASP page.

Customizing a screen

When you've created a screen, you must define screen fields.

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Customization | <entity> | Screens.

3. Click the screen you want to customize.

4. Add fields to the screen and click Save.

Displaying a screen using runblock and screen
name
You can display a screen directly from a new tab using the runblock tab action. The tab group to
which you add the screen must be the tab group for the entity on which the screen is based. This
ensures that when the block is used, it maintains the context for the current entity.

For example, suppose you create a new entry screen for the Company table to edit extra data
relating to companies. You can add this screen to the Company tab group, but it won't work on any
other tab group.

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Customization | <Entity> | Tabs.

3. Click the tab group to which you want to add the tab.

4. Enter the tab name in Caption.

5. Select runblock from Action.

6. Enter the screen name in Block Name.

7. Click Add and then Save.

Sage CRM 2023 R2 - Developer Guide Page 65 of 403

To view the screen, click the new tab.

Displaying a screen using runblock with a custom
block
You can display a screen by creating a block from the screen, creating a new tab, and using the
runblock action to run the block. This option enables you to set the properties of the block before
displaying it. The tab group to which you add the block must be the tab group for the entity on
which the block is based.

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Customization | <Entity> | Blocks and click
New.

3. Enter the block details, select the screen name from Use Group, and click Save.
The block is displayed in the list of blocks for the entity.

4. Click the name of the block you want to customize.

5. Enter properties and click Save.

6. Go to <My Profile> | Administration | Customization | <entity> | Tabs and select the
block context.

7. Click the tab group to which you want to add the tab.

8. Select runblock from Action and enter the block name in Block Name.

9. Click Add and then Save.

To view the screen, click the new tab.

Displaying a screen using an ASP page

You can display a screen created from an .asp file by linking to the file from a custom tab. This
option lets you set the properties of the screen before displaying it.

1. Create the .asp file and save it in the Custom Pages folder of your Sage CRM installation
directory.

2. Log on to Sage CRM as a system administrator.

3. Go to <My Profile> | Administration | Customization | <Entity> | Tabs and select the
block context.

Sage CRM 2023 R2 - Developer Guide Page 66 of 403

4. Click the tab group to which you want to add the tab.

5. Enter a name for the tab.

6. Select customfile from Action.

7. Enter the name of the ASP page in Custom File.

8. Click Add and then click Save.

To view the screen, click the new tab.

Buttons
l Creating button groups

l Adding buttons to button groups

l Displaying button groups

l Restricting access to button groups

Creating button groups
You can define button groups that appear on specific Sage CRM screens to access custom
functionality. A button group acts as a placeholder for displaying buttons.

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Advanced Customization | Button Groups.

3. Click New.

4. Enter the name of the new button group in Name.

5. From Select Action, select the Sage CRM screen on which you want the button group to
appear.

Note: You can define only one button group per Sage CRM screen.

6. Click Save. The new button group is displayed on the Button Groups list.

Sage CRM 2023 R2 - Developer Guide Page 67 of 403

Adding buttons to button groups
When you've created a button group, you can add buttons that are displayed on the relevant Sage
CRM screen.

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Advanced Customization | Button Groups.

3. Click the button group to which you want to add the buttons.

4. Enter the button name in Caption.

5. Select Customfile from Action.

6. Specify the associated ASP file in Custom File.

7. Select the button image from Bitmap.

8. Click Add. The new button is displayed under Desktop HTML Button Group Contents.
Use the up and down arrows to position the button relative to other buttons you've created.

9. Click Save. The new button is displayed on the summary screen.

Displaying button groups
Buttons that you've added to a button group appear automatically on the relevant Sage CRM
screen. The button group is displayed on the right-hand side of the page above the Help button.

Restricting access to button groups
When you create or edit a button group, you can use an SQL statement to limit access to individual
buttons in the group.

Buttons in the button group adhere to a user’s existing security rights. For example, a user must
have at least View rights to Cases to open a button group which displays a list of cases.

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Advanced Customization | Button Groups. The
Button Groups list is displayed.

3. Click the button group you want to change.

4. Select the button to which you want to limit access in the Desktop HTML Button Group
Contents area.

5. Enter the limiting SQL statement in the SQL field. For example:

Sage CRM 2023 R2 - Developer Guide Page 68 of 403

User_PrimaryChannelId = 3

6. Click Update and then click Save.

Classic Dashboard
Classic Dashboard is only available if you upgraded Sage CRM from a pre-7.2 version.

l Customizing the Classic Dashboard

l Adding a List block to the Classic Dashboard

l Adding a block to the Interactive Dashboard using the Contents field

l Adding a Chart block to the Classic Dashboard

Customizing the Classic Dashboard
You can create and customize content for the Classic Dashboard using List, Chart, and Content
blocks.

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Customization | <Entity> | Blocks.
A list of existing blocks for the entity is displayed.

3. Click the block that you want to customize. The Maintain Block definition page is displayed.

4. Enter information in the fields listed below and click Save.

Field Description Applies to

Width Leave this field blank so the block fills the available
space.

l List Block

l Chart
Block

l Content
Block

Height Leave this field blank so the block fills the available
space.

l List Block

l Chart

Sage CRM 2023 R2 - Developer Guide Page 69 of 403

Field Description Applies to

Block

l Content
Block

Interactive/
Classic
Dashboard
Level

To display a block in the list of Available Content on the
dashboard, select one of the following options:

l Available In Dashboards. Includes the block in
Available Content for all users.

l Dashboard - Info Manager. Includes the block in
Available Content for all users with security
administration rights set to Info Manager or System
Administration.

l Dashboard - Administration Only. Includes the
block in Available Content for all users with security
administration rights set to System Administration.

l List Block

l Chart
Block

l Content
Block

Double Width
Block

Select this option to spread the block over two of the three
columns on the Classic Dashboard.

l List Block

l Chart
Block

l Content
Block

Long Block Select this option to set a longer maximum length for the
block.

l List Block

l Chart
Block

l Content
Block

Dashboard
Conditional

Enter a filter for records. For example, the My Cases block
contains the following condition to limit records to those
that are In Progress and assigned to the current user:

case_assigneduserid=#U and case_status='In Progress';

List Block

Contents Custom content. For example, content from external web
sites. When you enter HTML (or Javascript within <script>

tags), the content is displayed on the Classic Dashboard.

Content Block

For an introduction to classic and interactive dashboards, see the User Help. For information on
how to set up standard classic dashboards for users, see the System Administrator Help.

Sage CRM 2023 R2 - Developer Guide Page 70 of 403

Adding a List block to the Classic Dashboard
You can add a List block to the Classic Dashboard Content page. For more information about this
page, see the User Help.

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Customization | <Entity> | Blocks.
A list of existing blocks for the entity is displayed.

3. Click New and then use the following options:

l Block Name. Enter a name for your block.

l Block Type. Select List Block.

l Copy Existing Block. Select the existing block you want to copy. Alternatively,
select a list from Use Group.

l Use Group. Select the existing list you want to use.

4. To order items in your list, open the list definition and select the field that you want to
sort on. Select Yes from Default Order By. Note that Allow Order By has no effect when
the list is viewed on the Classic Dashboard.

5. Click Save. The new block is displayed in the list of existing blocks for the current entity.

6. Click the block you want to customize.

7. From Classic Dashboard Level, select Available In Dashboards.

8. Click Save.

When users click Modify Dashboard on the Classic Dashboard tab, the newly created block is
displayed in Available Content.

Adding a Content block to the Classic Dashboard
You can add a Content block to the Classic Dashboard Content page. For more information about
this page, see the User Help.

1. Create an ASP page to display the content for the Classic Dashboard and save it in the
Custom Pages folder.
If you create an ASP page that uses the GetPage() method to display content, and you want
to suppress the tab group, pass the none parameter to the GetPage method.
From Sage CRM version 7.2b and later, all ASP pages must use the AddContent(Content)
and GetPage() methods to build the HTML for the page. This is to ensure the correct

Sage CRM 2023 R2 - Developer Guide Page 71 of 403

rendering of the page structure and links including the left hand main menu, horizontal
tabs and top content.

Response.Write(CRM.GetPage("none"));

2. Log on to Sage CRM as a system administrator.

3. Go to <My Profile> | Administration | Customization | <Entity> | Blocks.
A list of existing blocks for the entity is displayed.

4. Click New and then use the following options:

l Block Name. Enter a name for your block.
l Block Type. Select List Block.

5. Click Save. The new block is displayed in the list of existing blocks for the selected entity.

6. Click the block you want to customize.

7. From Classic Dashboard Level, select Available In Dashboards.

8. In Contents, add the following code and click Save:

<script>
window.attachEvent("onload",callPage("test.asp"))
function callPage(strPageName)
{

var SID = "";
var strPath = document.URL;
var arrayApp = strPath.split("eware.dll");
var arrayFullKeys = strPath.split("?");
var arrayKeys = arrayFullKeys[1].split("&");
for(var i=0;i<arrayKeys.length;i++)
{

var arrayValue = arrayKeys[i].split("=");
if (arrayValue[0].toLowerCase()== "sid")
{

 SID = arrayValue[1];
 }
 }

var strNewPath = arrayApp[0] + "CustomPages/" + strPageName +"?SID="+SID+GetKeys()
document.write("<IFRAME WIDTH=100% src='"+strNewPath+"' height=height=120 width=120

frameborder=0 scrolling = 'no'>");
document.write("</IFRAME>");

}
</script>

The example above contains a JavaScript function called callPage. The ASP page name (tesp.asp)
is passed as a parameter to the function and it builds the path including the correct session and
context information that allows the ASP page to use CRM blocks.

When users click Modify Dashboard within the Classic Dashboard tab, the newly created block
is displayed in Available Content.

Sage CRM 2023 R2 - Developer Guide Page 72 of 403

Adding a Chart block to the Classic Dashboard
You can add a Chart block to the Classic Dashboard Content page. For more information about this
page, see the User Help.

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Customization | <Entity> | Blocks. A list of
existing blocks for the entity is displayed.

3. Click New and then use the following options:

l Block Name. Enter a name for your block.

l Block Type. Select Chart Block.

l Copy Existing Block. To copy an existing block, select the block. Alternatively,
leave this option blank.

4. Click Save.
The new block is displayed in the list of existing blocks for the current entity.

5. Click the block that you want to customize.

6. From Classic Dashboard Level, select Available In Dashboards.

7. Click Save.

When users click Modify Dashboard on the Classic Dashboard tab, the newly created block is
displayed in Available Content.

Interactive Dashboard
l Customizing the Interactive Dashboard

l Adding a block to the Interactive Dashboard using the Contents field

l Displaying an ASP page in a gadget

l Adding a third-party gadget to the Interactive Dashboard

Customizing the Interactive Dashboard
You can create and customize content for the Interactive Dashboard using content blocks.

Sage CRM 2023 R2 - Developer Guide Page 73 of 403

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Customization | <Entity> | Blocks.
A list of existing blocks for the entity opens.

3. Click the block that you want to customize.

4. Enter information for the fields listed below and click Save.

Field Description

Dashboard Level To display a block in the list of Available Content on the dashboard, select
one of the following options:

l Available In Dashboards. Includes the block in Available Content
for all users.

l Dashboard - Info Manager. Includes the block in Available Content
for all users with Security Administration rights set to Info Manager
or System Administration.

l Dashboard - Administration Only. The block is included in
Available Content for all users with Security Administration rights set
to System Administration.

Contents Custom content.

For example, content from external web sites. When you enter HTML (or
JavaScript within <script> tags), the content is displayed on the Interactive
Dashboard.

For an introduction to classic and interactive dashboards, see the User Help.

Adding a block to the Interactive Dashboard
using the Contents field
You can make a Content block available on the Interactive Dashboard by pasting your HTML code
into the Contents field on the Maintain Block Definition page.

1. Prepare your HTML code and copy it to the Clipboard.

2. Log on to Sage CRM as a system administrator.

3. Go to <My Profile> | Administration | Customization | Secondary Entities | System
| Blocks.

Sage CRM 2023 R2 - Developer Guide Page 74 of 403

4. Click New and then use the following options:

l Block Name. Enter a name for your block.

l Block Type. Select Content Block.
5. Click Save.

6. Click the new block and then from Interactive/Classic Dashboard Level select
Available in Dashboards.

7. Paste the HTML code you prepared in step 1 into Contents and click Save.

8. To display the block as a larger sized block on the Classic Dashboard, select the
Double Width Block and Long Block check boxes.
For more information, see Customizing the Classic Dashboard.

9. To test the block, go to My CRM | Dashboard and create a new web site gadget on an
existing or new dashboard.

10. Select the new content block from Content Block and complete the gadget wizard.
The gadget appears on the dashboard, showing the content block that you created.

Displaying an ASP page in a gadget
You can display an ASP page in a web site gadget on the Interactive Dashboard.

1. Create an ASP page called test.asp and save it in the Custom Pages folder. It should
contain the following code, where <instancename> is the Sage CRM instance name and
testNew.asp is the ASP page to be displayed in the web site gadget:

<%@ CodePage=65001 Language=JavaScript%>
<%
function GetKeyValue(querystringname)
{
var strPathFull = String(Request.ServerVariables("HTTP_REFERER"));
var arrayPath = strPathFull.split("?");
var strPath = arrayPath[1];
var arrayKeys = strPath.split("&");
for (var i=0;i<arrayKeys.length;i++)
{
var arrayValue = arrayKeys[i].split("=");
if (arrayValue[0].toLowerCase()== querystringname.toLowerCase())
{
return arrayValue[1];

 }
 }
return "";

}
Response.Redirect
("http://localhost/<instancename>/CustomPages/testNew.asp?SID="+GetKeyValue
("SID")+"&J=testNew.asp&T=User&PopupWin=Y")

Sage CRM 2023 R2 - Developer Guide Page 75 of 403

%>

If you create an ASP page that uses the GetPage() method to display content, and you want
to suppress the tab group, pass the none parameter to the GetPage() method.
In Sage CRM version 7.2b or later, all ASP pages must use the AddContent(Content) and
GetPage() methods to build the HTML for the page. This is to ensure the correct rendering
of the page structure and links including the left hand main menu, horizontal tabs, and top
content.

Response.Write(CRM.GetPage("none"));

2. Log on to Sage CRM as a system administrator.

3. Click Dashboard and open the relevant dashboard| New Gadget.

4. Click New Gadget | Create Gadget.

5. Click Web Site and enter #crm_server#/CustomPages/test.asp in Web Address.

6. Click Next and enter a name and description for the gadget.

7. Click Finish. The ASP page is displayed in the gadget.

Adding a third-party gadget to the Interactive
Dashboard
You can make a third-party gadget available to Sage CRM users through the Interactive Dashboard.

Third-party gadgets can communicate with other gadgets in Sage CRM through the Event Channel,
passing data in JSON format. Third-party gadgets are set up as web site gadgets, which link to a
file in the wwwroot\staticcontent folder. You can use them in My CRM or Company context.
Third-party gadgets can send or receive data from other gadgets, which means they can set the
filter or be filtered by other gadgets.

Sage CRM exposes the following methods that allow you to create gadgets using JavaScript:

l scrmGetSageCRMOwner method

l scrmRegisterEvent method

l scrmPublishEvent method

l scrmGetGadgetProperty method

l scrmSetGadgetProperty method

l scrmSaveGadgetProperties method

For a custom gadget example, see Code sample: Custom gadget .

Sage CRM 2023 R2 - Developer Guide Page 76 of 403

The following example demonstrates how to link a third-party gadget to a Company List and a
Company Summary gadget:

1. Copy the third-party gadget file to one of the following location:

%ProgramFiles(x86)%\Sage\CRM\<Installation Name>\WWWRoot\StaticContent

The default installation name is CRM.

2. Set up a List gadget and a Record Summary gadget that use company data.

3. Add a Web Site gadget which links to the third-party gadget file you have copied.
For example: #crm_server#/StaticContent/<Gadget HTML File Name>

4. Click Links on the Web Site gadget to link it to the Company List and Record Summary
gadgets.

5. Scroll through the Company List and watch the data on the third-party gadget change.

6. Enter a CRM Company ID on the third-party gadget, click Publish. As a result, the Record
Summary is populated with the company data.

scrmGetSageCRMOwner method

Finds the web site gadget that owns the current page.

Parameters

l iframeDomElementId. ID of the iframe element that's stored by the URL gadget.

Example

gadget = parent.scrmGetSageCrmOwner(window.frameElement.id);

scrmRegisterEvent method

Registers event classes the gadget posts and/or listens to.

Parameters

l gadget. Gadget that publishes/receives event; Must not be null. May be obtained by calling
scrmGetSageCRMOwner method method.

l entityId. ID (custom_tables.bord_tableid) of entity that gadget publishes or may listen to.
May be null.

l fieldType. Type of field the gadget publishes/may listen to. May be null.

Sage CRM 2023 R2 - Developer Guide Page 77 of 403

l fieldName. Name of field the gadget publishes/may listen to. Must not be null or empty.

l direction. Either PUBLISH (when gadget publishes information), LISTEN (when gadget
responds for events in other gadgets), or BOTH. Must not be null or empty.

Example

gadget = parent.scrmGetSageCrmOwner(window.frameElement.id);
parent.scrmRegisterEvent(gadget, "Test Field", "5", null, "BOTH");

scrmPublishEvent method

Publishes event.

Parameters

l gadget. Gadget that calls the method.

l fieldName. Field name that's published.

l jsonData. Data to publish, the first property must be entityRecordId and must contain the
value of the fieldName field.

Example

gadget = parent.scrmGetSageCrmOwner(window.frameElement.id);
parent.scrmRegisterEvent(gadget, "Test Field", "5", null, "BOTH");
message = '{"entityRecordId":"' + document.forms[0].elements["companyId"].value + '"}';
parent.scrmPublishEvent(gadget, "Test Field", message);

scrmGetGadgetProperty method

Gets gadget properties.

Parameters

l gadget. Gadget that calls the method.

l propertyName. Name of the property to read.

Sage CRM 2023 R2 - Developer Guide Page 78 of 403

Example

gadget = parent.scrmGetSageCrmOwner(window.frameElement.id);
propValue = parent.scrmGetGadgetProperty(gadget,document.forms[0].elements
["propertyName"].value);

scrmSetGadgetProperty method

Sets gadget properties so they can be saved.

Parameters

l gadget. Gadget that calls the method.

l propertyName. Name of the property to read.

l propertyValue. Value of the property to read.

Example

gadget = parent.scrmGetSageCrmOwner(window.frameElement.id);
parent.scrmSetGadgetProperty(gadget, document.forms[0].elements["propertyName"].value,
document.forms[0].elements["propertyValue"].value);
parent.scrmSaveGadgetProperties(gadget);

scrmSaveGadgetProperties method

Saves gadget properties on the server so they can be used again.

Parameters

l gadget. Gadget that calls the method.

Example

gadget = parent.scrmGetSageCrmOwner(window.frameElement.id);
parent.scrmSetGadgetProperty(gadget, document.forms[0].elements["propertyName"].value,
document.forms[0].elements["propertyValue"].value);
parent.scrmSaveGadgetProperties(gadget);

Sage CRM 2023 R2 - Developer Guide Page 79 of 403

Code sample: Custom gadget

This example declares methods used to interact with the Interactive Dashboard eventing
mechanism. This page can publish and listen to the Company entity.

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>Untitled Page</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<!First, the page needs to declare methods used to interact with

 Interactive Dashboard eventing mehanism. !>
<!In this example, the page declares that it may publish as well as listen to

 the Company entity. !>
<script type="text/javascript">

//This global variable stores the Web Site Gadget that displays the page
//in an iframe; It will be used in two places:
//1)when page declares that it wishes to use Interactive Dashboard and
//2)when page publishes information to other gadgets;

 gadget = null;
try{

//Find the Web Site Gadget that owns the current page:
//API description:
//public static IFrameGadget scrmGetSageCrmOwner(String iframeDomElementId)
//@param iframeDomElementId Id of the iframe element that is stored by the url

gadget;
 gadget = parent.scrmGetSageCrmOwner(window.frameElement.id);

//Now that the gadget is located, the page needs to register event classes
//it will post and/or listen to.
//API description:
//public static void scrmRegisterEvent(IFrameGadget gadget, String fieldName,
//String entityId, String fieldType, String direction)
//@param gadget Gadget that publishes/receives event; Must not be null.
//May be obtained by calling scrmGetSageCrmOwner method;
//@param entityId ID (custom_tables.bord_tableid) of entity that gadget
//publishes/may listen to. May be null;
//@param fieldName Name of field the gadget publishes/may listen to.
//Must not be null or empty;
//@param fieldType Type of field the gadget publishes/may listen to. May be null;
//@param direction one of: "PUBLISH" (when gadget publishes information),
//"LISTEN" (when gadget responds for events in other gadgets),
//"BOTH"; Must not be null or empty;

 parent.scrmRegisterEvent(gadget, "Test Field", "5", null, "BOTH");
 }

catch(err){
//errors that comes from Interactive Dashboard API are written to
//log file on the server automatically,
//and are rethrown again up the stack - so developer can react for errors as well

 alert(err.description);
 }

</script>
<!As the page publishes information, it is handy to write one method that

 does it and call it later in from within body!>
<script type="text/javascript">

//This method builds message to be published based on form input,
//and eventually - publishes the message;
//Notice, that native gadgets require that the published data is in JSON format. The

first
//field in JSON data must be called "entityRecordId" and its value must be row

identifier.

Sage CRM 2023 R2 - Developer Guide Page 80 of 403

function publishInteractiveDashboardEvent(){
try{

 message = '{"entityRecordId":"' + document.forms[0].elements
["companyId"].value + '"}';

//API description:
//public static void scrmPublishEvent(IFrameGadget gadget,
//String fieldName, String jsonData)
//@param gadget Gadget that calls the method
//@param fieldName field name that is being published,
//the "entityRecordId" value from jsonData is value of this field
//@param jsonData data to publish, the first property must be called
//"entityRecordId" and must contain value of field called fieldName

 parent.scrmPublishEvent(gadget, "Test Field", message);
 }

catch(err){
//errors that comes from Interactive Dashboard API are written to log file on
//the server automatically,
//and are rethrown again up the stack - so developer can react for errors as well

 alert(err.description);
 }
 }

</script>
<!To receive an event from othe gadget, event handler must be declared.!>
<script type="text/javascript">

//To receive an event from othe gadget, the following method must be declared.
//This method is called whenever gadget to which current page is subscribed to
//publishes an event.
//NOTE: the gadget may publish the same event more than one time, so it is good

practice to
//react to the first event only and ignore the others.
//API description:
//function onSageCrmEvent(publisherGadgetId, publisherFieldName, publisherFieldType,
//publisherEntityId, publishedData)
//publisherGadgetId Id of publisher gadget
//publisherFieldName Name of field in publisher gadget; Always filled;
//publisherFieldType Type of field in publisher gadget; May be null or empty;
//publisherEntityId ID of entity that is being published; May be null or empty;
//publishedData The data publisher gadget sends; typically JSON string where the

first
//value is called "entityRecordId" and contains ID of record;

 lastEntityRecordId = null;
function onSageCrmEvent(publisherGadgetId, publisherFieldName, publisherFieldType,

 publisherEntityId, publishedData){
//first, convert the publishedData in JSON format to object
var publishedObject = eval('(' + publishedData + ')');
//now check if this event hasn't been already processed

 entityRecordId = publishedObject.entityRecordId;
if(entityRecordId!=lastEntityRecordId){

//mark this event as processed
 lastEntityRecordId = entityRecordId;

//do the processing
 logIncomingEvent(publishedObject, publishedData);
 }
 }

</script>
<!To read or write custom propertyies from/to the server, call simple method from API>
<script type="text/javascript">

//This method reads property from that may have been stored on the server
function readCustomProperty(){

try{
//API description:
//public static void scrmGetGadgetProperty(IFrameGadget gadget, String

Sage CRM 2023 R2 - Developer Guide Page 81 of 403

propertyName)
//@param gadget Gadget that calls the method
//@param propertyName name of the property to read

 propValue = parent.scrmGetGadgetProperty(gadget,
document.forms[0].elements["propertyName"].value);

//Property may be null, if was not yet written
if(propValue==null){

 propValue = '';
 }

document.forms[0].elements["propertyValue"].value = propValue;
 }

catch(err){
//errors that comes from Interactive Dashboard API are written to log file on
//the server automatically,
//and are rethrown again up the stack - so developer can react for errors as well

 alert(err.description);
 }
 }

//This method saves property on the server so it can be restored in the future
function saveCustomProperty(){

try{
//First, you set ALL properties. In our case it is only one property,

//but you can set as many as you like.
//API description:
//public static void scrmSetGadgetProperty(IFrameGadget gadget, String

propertyName)
//@param gadget Gadget that calls the method
//@param propertyName name of the property to read

 parent.scrmSetGadgetProperty(gadget, document.forms[0].elements
["propertyName"].
 value, document.forms[0].elements["propertyValue"].value);

//Now, when all properties are set,
//save them on the server in one http request;

 parent.scrmSaveGadgetProperties(gadget);

 alert('Property saved succesfully');
 }

catch(err){
//errors that comes from Interactive Dashboard API are written to log file on the
//server automatically,
//and are rethrown again up the stack - so developer can react for errors as well

 alert(err.description);
 }
 }

</script>
<script type="text/jscript">

//this is simple function used in example to log incoming events;
function logIncomingEvent(publishedObject, publishedData){

var table=document.getElementById('eventsLog');
var row = table.insertRow(2);
var cellRecordId=row.insertCell(0);
var cellRawData=row.insertCell(1);

 cellRecordId.innerHTML="'" + publishedObject.entityRecordId + "'";
 cellRawData.innerHTML="'" + publishedData + "'";
 }

</script>
</head>
<body>

<form id="form1" runat="server">
<div>

 Custom properties allow to store data between sessions on CRM server.

 Custom property test:

Sage CRM 2023 R2 - Developer Guide Page 82 of 403

<table>
<tr> <td> Name:</td><td><input

type="text" name="propertyName" value="testProperty"/> </td></tr>
<tr> <td> Value: </td><td> <input type="text" name="propertyValue" value=""/> </td> </tr>
</table>

<input type="button" value="Save!" onclick="saveCustomProperty();"/><input type="button"

value="Read!" onclick="readCustomProperty();"/>

<hr/>

 Gadgets may publish events top other gadgets:

 Company ID: <input type="text" name="companyId" value="18"/>

<input type="button" value="Publish!" onclick="publishInteractiveDashboardEvent
();"/>

<hr/>
 Gadgets may also receive events from other gadgets:

<table id='eventsLog' border='1' width="100%" style="text-align:center">
<tr>

<td colspan="2" align="center">
 Incoming events:

</td>
</tr>
<tr>

<td align="center">
 Record Id

</td>
<td align="center">

 Raw data
</td>

</tr>
</table>

</div>
</form>

</body>
</html>

System menus
l Modifying system menus

l Creating a new menu button

l Adding an external link to the main menu

Modifying system menus
The Systems Menu functionality enables you to customize the following tab groups:

l Administration menu

l Main menu

Sage CRM 2023 R2 - Developer Guide Page 83 of 403

l Individual Administration work areas

l Some User (Main Menu) work areas

For more information on System Menus, see the System Administrator Help.

To customize tab groups for system menus:

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Advanced Customization | System Menus.

3. In the Tab Group Name column, click the tab group that you want to modify.

4. Use the page that opens to add, remove, or update tabs as necessary.

5. When you are finished, click Save.

To customize tab groups for a Primary or Secondary entity:

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Customization.

3. Click the Primary or Secondary entity.

4. Click the Tabs tab.

5. In the Tab Group Name column, click the tab group you want to modify.

6. Use the page that opens to add, remove, or update tabs as necessary.

7. When you are finished, click Save.

Creating a new menu button
Within System Menus, you can create new main menu and admin menu buttons and link them to
custom pages.

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Advanced Customization | System Menus.

3. In the Tab Group Name column, click the tab group you want to modify:

l To create a main menu button, click MainMenu.

l To create an admin menu button, click an admin link. Admin is the Administration
main menu and home page. AdminUsers is the Users home page.

Sage CRM 2023 R2 - Developer Guide Page 84 of 403

4. On the page that opens, use the following options:

l Caption. Enter the caption you want to assign to the new menu button.

l Action. Select customurl, and then in the Url name text box type the URL of the
page you want the new menu button to open. If the target page is a custom ASP
page, select customfile, and then type the ASP file name in the Custom File text
box.

l Bitmap. Select the file that contains the icon you want to appear on the new menu
button.

l New Window. Select Yes if you want the new menu button to open the page in a
new window. If you want to open the page in the current window, select No in this
option.
This option is only available when in Action you selected customurl.

5. Click Add and then click Save to create the new menu button.
The new menu button is displayed on the top of the screen.

Adding an external link to the main menu
You can add a new Home button to the Menu and configure that button to open a web page of your
choice.

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | System | System Behavior.

3. Click Change.

4. In Home page URL, enter the URL of the web page you want the Home button to open.
For example, you can configure the Home button to open the web page of your company.

5. Click Save.

6. Log off and then log back on.
The new Home button appears on the right-hand side of the Menu at the top of the Sage
CRM page.

Tabs
l Creating a new tab group

l Editing the main menu tab group

l Adding a tab that links to an ASP page

l Restricting access to a tab

Sage CRM 2023 R2 - Developer Guide Page 85 of 403

l Tab properties

l Tab actions

Creating a new tab group
When you link to a new table in the Sage CRM database or from an external database, you can
create a new group of tabs to display the lists, screens, and charts for that table. To display the
new tab group, link it to a main menu button.

These steps create a new tab group from a newly connected table.

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Customization | <Entity> | Tabs.

3. Click New, enter a tab name in Name, and then click Save.
The new tab group is displayed in the list of tab groups.

4. Click the tab group name.

5. Add new tabs to the tab group.

6. Click Update and then click Save.

To view the tab group, create a new main menu button and link it to an ASP page that calls the tab
group. When the user clicks the new menu button, the tabs in the new tab group are displayed.

Editing the main menu tab group
You can edit tab groups in the Main Menu, My CRM menu, and Team CRM menu.

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Advanced Customization | System Menus.

3. Click the tab group you want to edit.

4. Edit the tab group as necessary.

5. Click Save.

For more information on customizing tabs, see the System Administrator Help.

Sage CRM 2023 R2 - Developer Guide Page 86 of 403

Adding a tab that links to an ASP page
1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Customization | <entity> | Tabs.

3. Click the tab group to which you want to add the new tab.

4. Use the following options:

l Caption. Enter a name for the new tab.

l Action. Select customfile.

l Custom File. Enter the file name of the ASP page.

5. Click Add and then click Save.

The sample ASP page below sets the tab to display the invoice list for the current company. The
ASP page calls a previously created Invoice List. For more information on creating lists, see
Creating a list.

<!-- #include file = "sagecrm.js" -->
<%

var ThisCompany;
var Invoices;

// Get the current company ID.
ThisCompany = CRM.GetContextInfo("Company","Comp_CompanyID");

// Call the list block that you previously created for invoices.
Invoices = CRM.GetBlock("Invoice_List");
Invoices.Title = "3rd Party Invoice History";

// Display the list of invoices for the company.
CRM.AddContent(Invoices.Execute("CustomerID="+ThisCompany));
Response.Write(CRM.GetPage());

%>

To view the new tab, find a relevant entity record and click the new tab. For example, find a
company and click the Invoices tab.

Restricting access to a tab
You can use an SQL statement to make a tab accessible exclusively to specific users, teams, or
territories. Other users, teams, and territories won't have access to that tab. For example, if you're
adding an Invoices tab to the company tab group, you can restrict tab access to users in the
Direct Sales team.

Sage CRM 2023 R2 - Developer Guide Page 87 of 403

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Customization | <Entity> | Tabs.

3. Click the tab group that contains the tab to which you want to restrict access.

4. In SQL, enter an SQL statement to restrict access to the tab, click Add, and then click
Save.

If you want to restrict access to several tabs, avoid using the syntax user_userid=<User ID>,
because the database is queried separately for each restricted tab.

Rather, use one of the following:

Syntax Description

U:<User IDs> Makes the tab accessible to the specified users only.

Example

U:4,5

This example makes the tab accessible to the users whose IDs are
4 and 5.

C:<Channel IDs> Makes the tab accessible to the specified teams only.

Example

C:4,5

This example makes the tab accessible to the teams whose
channel IDs are 4 and 5.

T:<Territory IDs> Makes the tab accessible to the specified territories only.

Example

T:-2147483640

This example makes the tab accessible to the territory whose ID
is -2147483640.

Sage CRM 2023 R2 - Developer Guide Page 88 of 403

Tab properties

Field Description

Caption Enter the tab name you want to appear on the Sage CRM user interface.

Action Select a tab action to display various Sage CRM screens. For more
information, see Tab actions.

Custom File Enter the name of the custom ASP file you want to use. This field only shows
up when in Action you select customfile.

The ASP file you specify must be stored in the following folder:

<Sage CRM Installation Folder>\<Install Name>\WWWRoot\CustomPages

If the target ASP file is stored in the root of that folder, you only need to
enter the file name, for example, MyCustomFile.asp.

If the target ASP file is stored in a subfolder, enter the subfolder name
followed by the file name, for example, MyAspFiles\MyCustomFile.asp.

Url Name Enter the URL you want to open.

This field only shows up when in Action you select curomurl.

Block Name Enter the name of the block you want to run.

This field only shows up when in Action you select runblock.

Tab Group Name Enter the tab group name.

This field only shows up when in Action you select runtabgroup.

System Act Select the system action you want to perform.

This field only shows up when in Action you select other.

SQL Enter an SQL statement to restrict access to the tab to specific users, teams,
or territories. For more information, see Restricting access to a tab.

Bitmap Specify the graphic file you want to use. For example, when you're creating a
menu button linked to a custom page.

To include your custom graphic file in the list, copy it to the

the folder that stores graphic files for the current theme in Sage CRM.

When the current theme is Contemporary, graphic files are stored in the

Sage CRM 2023 R2 - Developer Guide Page 89 of 403

Field Description

following default folder:
%ProgramFiles
(x86)%\CRM\CRM\WWWRoot\Themes\Img\Ergonomic\Icons

New Window

(only available
when Action is
set to
customurl.

Select if you want to open the custom URL in a new or current window.

l Yes. Opens the screen in a new window.

l No. Opens the screen in the current window.

Tab actions
When you create a new tab, you can specify the tab action. Each action displays different Sage
CRM screens including typical search screens and custom screens created using ASP pages. For
information about system actions that are available if you don't have the Extensibility Module, see
the System Administrator Help.

Action Description

customfile Displays custom ASP pages. For examples,
see:

l Adding a tab that links to an
ASP page

l Modifying system menus

customurl Displays URLs. For examples, see:

l Adding an external link to the
main menu

l Modifying system menus

runblock Displays the following blocks:

l The screen name of a screen based
on the current entity

l The list name of a list based on
the current entity

l Any EntryGroupBlock based on a
screen of the current entity

Sage CRM 2023 R2 - Developer Guide Page 90 of 403

Action Description

l Content blocks

l Marquee blocks

l Message blocks

l Chart blocks

runtabgroup Displays tab groups.

Other Select a system action. For more
information, see the System Administrator
Help.

Adding Help to custom pages
You can add a help button and link a context-sensitive help topic to an ASP page. For more
information on customizing help, see the System Administrator Help.

1. Use an HTML editor to create an HTML help file and save it to
<Sage CRM Installation Folder><Install Name>\WWWRoot\HELP\EN\Main Menu\Content\User.

For example: %ProgramFiles(x86)%\Sage\CRM\CRM\WWWRoot\HELP\EN\Main
Menu\Content\User

Here's an example of an HTML help file.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>My Help File</title>

</head>
<body>
<h2 class="pHeading1">This is the Heading for the Help Topic</h2>
<p class="pBody">This is where the body of the help topic goes</p>
<hr />
<p style="font-size: 7pt" font-family-"arial">© Copyright Sage Technologies. All
rights reserved.</p>
</body>
</html>

2. Add a help button to your ASP page.
The following code creates the button. In this example, the custom help file is called FI_

Sage CRM 2023 R2 - Developer Guide Page 91 of 403

SearchingForCompany.htm.

//The new help file:
var HelpFile = "FI_SearchingForCompany.htm";

//This specifies the path to the help system and should be included here unchanged.
var strCustomHelpButton = CRM.Button("Help", "help.gif",
"javascript:window.open('/"+sInstallName+"/help/EN/Main Menu/Default_
CSH.htm#User/"+HelpFile+"',
'HELPWIN','scrollbars=yes,toolbar=no,menubar=no,resizable=yes,top=200,
width=600,height=400');"););:
re = /href/gi;
strCustomHelpButton = strCustomHelpButton.replace(re, "onclick");
myBlock.AddButton(strCustomHelpButton);

3. In Sage CRM, open the ASP page and then click the Help button.
The online help opens in a new window and displays the new help page.
Due to a limitation of this method, the new help page can't be included in the Sage CRM
Help Table of Contents, Index, or Search.

We recommend that you create backup copies of your custom help pages and store them in a safe
place.
Any changes you make to help files in the Sage CRM installation folder may be overwritten when
you upgrade Sage CRM to a new version or install a Sage CRM patch.

Sage CRM 2023 R2 - Developer Guide Page 92 of 403

Database

You can create new database connections and external table connections. A database connection is
the registration of another database to which the Sage CRM server can connect directly or
indirectly. You can select from predefined database types. When you've made the database
connection, you can create a new table connection by referencing the new database connection or
an existing database connection. You need the Extensibility Module in order to create these
connections. Also, the database with which the connection is made must have a field that can
uniquely identify the table, and there must be a matching field with this value on the related table
in Sage CRM.

l Creating a new database table

l Creating a new database connection

l Creating a new table connection

l Table- and entity-level scripts

l Database customization examples

l Getting a list of field types used in the system

Sage CRM 2023 R2 - Developer Guide Page 93 of 403

Creating a new database table
1. Go to <My Profile> | Administration | Advanced Customization | Tables And

Databases.

2. Click Create Table.

3. Complete the following options and click Save:

l Table Name. Enter a name for the new table. Make sure the name does not contain
spaces.

l Table Caption. Click in this text box to enter a table caption. By default, the table
caption is identical to the value you entered in Table Name. You can edit the
default table caption if necessary.

l ID Field Name. Enter the name of the table field (column) with which you want to
uniquely identify the table. Use the following format: <ColumnPrefix>_
<TableName>ID. This field is required to use the table like a normal Sage CRM table
with screens, lists, and so on.

l Column Prefix. Enter a prefix for the columns in the table. A column prefix is
usually three to four characters long. Do not include an underscore.
Column prefix example: newt.

l Description Field. Enter a description to use this table as a lookup. When you
configure a selection entry type, the table is listed in Existing Lookups.
Enter a description for tables with small amounts of rarely changing data only
because the records are loaded into memory. The user must ensure that metadata is
refreshed whenever changes are made to the table so that changes are reflected in
the drop-down list.
If the table contains a large (approximately 1,000+) number of records, Sage CRM
may time out when loading.

l Company Id Field. Enter name of the table field that holds identity values to link
the new table to the Company entity. Use the following format: <ColumnPrefix>_
<FieldName>.

l Person Id Field. Enter the name of the table field that holds identity values to link
the new table to the Person entity. Use the following format: <ColumnPrefix>_
<FieldName>.

l User Id Field. Enter the name of the table field that holds identity values to link
the new table to the User entity. Use the following format: <ColumnPrefix>_
<FieldName>.

l Workflow Id Field. Enter the name of the table field that's used to identify
workflows. Use the following format: <ColumnPrefix>_<FieldName>.

Sage CRM 2023 R2 - Developer Guide Page 94 of 403

l Top Level Entity. To make the table a Primary entity, select Yes. Otherwise, select
No.

l Allow Web Service Access. To allow Web Service access to the table, select Yes.
Otherwise, select No.

l Read-only SData. To allow SData Provider to access the table, select Yes.
Otherwise, select No. For more information, see Using SData API.

The following columns are automatically included in the new table. If you entered a value in
Company Id Field, Person Id Field, or User Id Field, the corresponding ID field is created in
the table.

Column Description

Newt_NewTableId Stores the unique ID for records.

Newt_CreatedBy Stores the user who creates a new record.

Newt_CreatedDate Stores the date when new records are
created.

Newt_UpdatedBy Stores the user who updates a record.

Newt_UpdatedDate Stores the date when a record is created.

Newt_Timestamp Stores the time when a record is created.

Newt_Deleted Stores the date when a record is deleted.

Creating a new database connection
1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Advanced Customization | Tables And
Databases.

3. Click New Database Connection.

4. Complete the following options and click Save:

l Database Driver. Select the type of the database to which you want to connect.

l Server Name (SQL Server Only). Enter the name of the computer that hosts the
Microsoft SQL Server database to which you want to connect. This field is not
required for other database types.

l Database Name. Enter the name of the database to which you want to connect.

l Port Number. Enter the port number on which you want to access the database.

Sage CRM 2023 R2 - Developer Guide Page 95 of 403

l Database Description. Enter a friendly description with which you want to identify
the database in the Sage CRM user interface.

l User Name. Enter the user name of the account under which you want to access the
database.

l Database Password. Enter the password that matches the user name.

When Sage CRM connects to the database, it appears in <My Profile> | Administration |
Advanced Customization | Tables And Databases.

Creating a new table connection
Note that you cannot create a connection to two or more external tables if all those tables contain
a field with identical name.

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Advanced Customization | Tables And
Databases.

3. Click New Table Connection.

4. Complete the following options and click Save:

l Table Name. Enter the name of the table to which you want to connect.

l Table Caption. Enter a friendly table description you want to appear in the Sage
CRM lists.

l Database. Select the database that contains the table to which you want to connect.

l ID Field Name. Enter the name of the table field (column) with which you want to
uniquely identify the table.

To access the table, go to <My Profile> | Administration | Customization | Secondary
Entity.Note that you cannot add views to an external table.

The table columns are displayed as fields in <My Profile> | Administration | Customization |
<external table> | Fields. To add the fields to screen areas, such as lists and screens, go to <My
Profile> | Administration | Customization | <external table>.

Sage CRM 2023 R2 - Developer Guide Page 96 of 403

Table- and entity-level scripts
Table- and entity-level scripts are an alternative method of creating SQL triggers that can be
performed in the Sage CRM system. The Extensibility Module is required to create and customize
table- and entity-level scripts.

Table-level scripts are executed when a record is inserted, updated, or deleted on a specified Sage
CRM table. Entity-level scripts are executed when a Sage CRM entity is inserted, updated, or
deleted.

Both table- and entity-level scripts can be executed on system tables or any tables that are
connected to the system. Each script must have the following four functions
defined: InsertRecord(), PostInsertRecord(), UpdateRecord(), and DeleteRecord(). These
functions are automatically included in a template when you create a new script.

Compared to SQL triggers, table- and entity-level scripts provide the following benefits:

l Improved database concurrency. The scripts are decoupled from the tables on which
they are acting.

l Easier debugging. The ErrorStr statement can be included to display diagnostic and
handle error messages. If an unhandled script error occurs, the system displays the script
name, line number, and the error message.

l Smoother upgrade process. Before performing an upgrade, you have to disable all
SQL triggers and then re-enable them afterwards. This is not the case with table- and
entity-level scripts.

In this section:

l Table-level scripts

l Detached table-level scripts

l Entity-level scripts

l Creating a script

l Viewing script logs

l Disabling table-level scripts

Table-level scripts
Table-level scripts are executed when a record is inserted, updated, or deleted on a specified
table. Table-level scripts enable you to reference CRM objects and access external applications,

Sage CRM 2023 R2 - Developer Guide Page 97 of 403

such as Microsoft Excel. For example, you could use a table-level script to write transaction logs of
sensitive information to specific columns of a text file.

Detached table-level scripts
Detached table-level scripts run within a predefined amount of time after a record is inserted,
updated, or deleted on a specified table. This enables the system to store a queue of scripts, so
users don't have to wait for a script to complete.

If there are no other scripts queued at the server, the script is run in a matter of minutes. This
type of script is useful when the execution of the script is likely to be time consuming. Users don't
see errors as they happen; they must view the log file for any diagnostic errors.

Entity-level scripts
Entity-level scripts and entity-level with rollback scripts are executed when an entity is inserted,
updated, or deleted.

l Use entity-level scripts when an action is dependent on the whole entity. For example, you
want to do something when a whole Company is inserted, not just when a record is added to
the Company table.

l Use entity-level with rollback scripts when you want to stop an action if a script error
occurs.

You can use entity-level scripts on the following entities: Company, Person, Email, and Address.
The scripts are invoked from the following standard Sage CRM screens when you click the final
Save.

Screen EntityScript Method

New Company Company InsertRecord()

Change Company Company UpdateRecord()

Delete Company Company DeleteRecord()

New Person Person InsertRecord()

Change Person Person UpdateRecord()

Delete Person Person DeleteRecord()

Edit Phone/E-mail Email UpdateRecord()

Sage CRM 2023 R2 - Developer Guide Page 98 of 403

Screen EntityScript Method

New Address Address InsertRecord()

Edit Address Address UpdateRecord()

Delete Address Address DeleteRecord()

For example, with an InsertRecord entity-level script attached to Company, each time you create a
new Company, the InsertRecord() function is executed when all the normal Company updates are
complete but before the final commit. Normal Company updates include inserts into many tables.
For example, address, address_link, phone, email, person, person_link.

If an error occurs while executing an entity-level with rollback script, all changes are undone and
the Company is not inserted. The error is displayed on the insert screen.

Creating a script
1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Customization | <Entity> | TableScripts.

3. Click New.

4. Complete the following options and click Save:

l Name. Enter a descriptive name with which you want to identify the script in the
Sage CRM user interface.

l Windows User as Domain\User (Optional). Enter the Windows user account under
which you want to run the script. Use the format domain\user name. If you leave this
option blank, the script is run under the current user account.

l User Password. Enter the password that matches the user account specified in
Windows User as Domain\User (Optional).

l Script Type. Select the type of your script.

l View. Only use this option when creating entity-level scripts. Enter the view from
which fields are available in the script. This must be relevant to the current entity.
If you leave this option blank, the default view for that entity is used.

l Order. Specify the order of scripts if there's more than one script for a table.

l Logging Level. Select the logging level to use when a user clicks Show Log:

l Off. Disables logging.

l Low. Writes low-level diagnostic information in the log table.

Sage CRM 2023 R2 - Developer Guide Page 99 of 403

l Medium. Writes medium-level diagnostic information in the log table.

l High. Writes high-level diagnostic information in the log table.
l On error, only display the default error message. Select this check box to hide
error details from users. You can enter an alternative error message in Default
Error Message. If you select this check box but don't enter a default error message,
no errors are shown to the user.

l On error, retry the script after delay. Select this check box to re-run the script
after a defined amount of time when an error occurs. The script is automatically re-
run until it completes without errors. This is useful for situations where an external
resource is temporarily available. Every time the script is re-run, the amount of time
until Sage CRM retries the script is increased.

l Table level script. Use this text box to enter your table- or entity-level script.
Depending on the type of script you want to run, enter your script in the appropriate
section. That is, function InsertRecord(), function PostInsertRecord(),
function UpdateRecord(), or function DeleteRecord().

l Disabled. Select this check box to disable the script. To enable the script, clear
this check box.

Viewing script logs
You can view diagnostic information for a script that was run at least once. For example, this can
be useful if you run Detached table-level scripts and want to check if the scripts completed
successfully. Script logs can help you to determine the reason why the script failed.

To view script logs:

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Customization | <Entity> | TableScripts.

3. In the list, click the script name.

4. Click Show Log.
Diagnostic information is displayed according to the logging level you set. You can change
this each time the script is run. If you want to delete the diagnostic information, click
Clear Log.

Disabling table-level scripts
When you create a table-level script for an entity in Sage CRM, the script is automatically enabled
by default. If necessary, you can selectively disable table-level scripts for a particular entity.

Sage CRM 2023 R2 - Developer Guide Page 100 of 403

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Customization | <Entity> | TableScripts.

3. In the Script Name column, click the name of the script you want to disable.

4. Select the Disabled check box and click Save.

You can enable a disabled script at any time by clearing the Disabled check box.

Database customization examples
l Creating a tab to display a list of invoices

l Displaying an invoice from a list

l Adding new data entry and maintenance screens

l Using UpdateRecord in an entity-level script

l Using InsertRecord in a table-level script

l Using PostInsertRecord in a table-level script

l Using UpdateRecord in a table-level script

l Using DeleteRecord in a table-level script

Creating a tab to display a list of invoices
This example connects Sage CRM to a table called Invoices on a third-party database called
External, and displays data from the table through Sage CRM. The Invoices table contains a field
called Customerid that can uniquely identify companies within Sage CRM. The company table in
Sage CRM has a corresponding field with this value.

You can work through the example using your own third-party database, or create a database using
a tool such as SQL Enterprise Manager.

The External database and Invoices table are not supplied with the sample data in Sage CRM.

To create a tab that displays a list of invoices, complete the following steps:

l Step 1: Connect to the External database

l Step 2: Connect the Invoices table

l Step 3: Create a List object for Invoices

Sage CRM 2023 R2 - Developer Guide Page 101 of 403

l Step 4: Create an ASP page to display the Invoices list

l Step 5: Add a tab that opens the ASP page

Step 1: Connect to the External database

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Advanced Customization | Tables And
Databases.

3. Click New Database Connection.

4. Complete the database details fields. For more information, see Creating a new database
connection.

5. Click Save to create the connection to the External database.

Step 2: Connect the Invoices table

1. Go to <My Profile> | Administration | Advanced Customization | Tables And
Databases.

2. Click New Table Connection.

3. Complete the table details fields. For more information, see Creating a new table
connection.

4. Click Save to connect to the Invoices table.
The table is listed in Administration | Customization | Secondary Entities.

Step 3: Create a List object for Invoices

1. Go to <My Profile> | Administration | Customization | Invoices | Lists.

2. Click New.

3. Enter a list name and select the table on which it's based.
You'll need to reference this list name from the ASP page.

4. Click Save.

5. Click the new list name and add the table columns you want to display in the list.

6. Click Update and then click Save.

Step 4: Create an ASP page to display the Invoices list

To display the Invoice list for the current company, you need to create a custom ASP page.

Sage CRM 2023 R2 - Developer Guide Page 102 of 403

1. Create a new ASP page and save it as Invoices.asp.

2. In the main block of the ASP page, include statements to perform the following tasks:

l Retrieve the current company ID and store it in a variable:

ThisCompany = CRM.GetContextInfo("Company","Comp_CompanyId");

l Create a block for the Invoice list and store it in a variable. You must reference the
list created in Step 3: Create a List object for Invoices.

Invoices = CRM.GetBlock("Invoice_List");

l Display the list on the screen by executing the List block. Make sure you include a
statement to show records for this company only:

CRM.AddContent(Invoices.Execute("Customerid="+ThisCompany));
Response.Write(CRM.GetPage());

The Invoices.asp file is displayed below.

<!-- #Include file = "sagecrm.js" -->

<%

/* This ASP displays a list of invoices with the current context company.
Pre-requisite: 3rd Party invoice table must have a CustomerID equal to Comp_CompanyID*/

%>

<%

// Get the current company ID
var ThisCompany = CRM.GetContextInfo("Company","Comp_CompanyID");

// Call the list block
var Invoices = CRM.GetBlock("Invoice_List");
Invoices.Title = "3rd Party Invoice History";

// Display the list for invoices with a customerID of ThisCompany
CRM.AddContent(Invoices.Execute("CustomerID="+ThisCompany));
Response.Write(CRM.GetPage());

%>

Step 5: Add a tab that opens the ASP page

1. Go to <My Profile> | Administration | Customization | Company | Tabs.

2. Click the Company tab group.

Sage CRM 2023 R2 - Developer Guide Page 103 of 403

3. Use the following options:

l Caption. Enter Invoices.
l Action. Select customfile.
l Custom File. Enter Invoices.asp.

4. Click Add and then click Save.

Now, when you open a Company record in Sage CRM and click the Invoices tab, a list of invoices
for the Company record is displayed.

Displaying an invoice from a list
You can use Custom Jump action functionality to link from a list entry to a summary screen for the
selected entry. This example displays an individual invoice from a list of invoices.

To display an individual invoice, complete the following steps:

l Step 1: Edit the List object for the invoices table

l Step 2: Create a Screen object for invoice details

l Step 3: Create a custom page to display the invoice screen

Step 1: Edit the List object for the invoices table

In this step, you add Custom Jump actions to the Invoices list.

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Customization | Invoices | Lists.

3. Click Invoice List.

4. For each field you want linked, from Hyperlink To, select Custom Jump.

5. In Custom File, enter the name of the ASP page that displays the Invoices screen
(Invdetail.asp) in.

6. In Custom ID Field, enter the name of the Invoices table field that uniquely identifies
each record. For example, InvoiceID.

7. Click Save.

Step 2: Create a Screen object for invoice details

1. Go to <My Profile> | Administration | Customization | Invoices | Screens.

2. Click New and select the fields to display on the invoice summary screen.

Sage CRM 2023 R2 - Developer Guide Page 104 of 403

3. Click Save.

Step 3: Create a custom page to display the invoice screen

Use the script below to create a custom page to retrieve the screen you created for individual
invoices.
The name of this page must be the same as the entry in Custom File in Step 1: Edit the List
object for the invoices table , in this case, Invdetail.asp.

<!-- #Include file = "sagecrm.js" -->

<%

var ThisInvoice;
var InvoiceDetailBlock;
var Record;
var Container;

// Return the value of the field used as the hyperlink to this page.
ThisInvoice = Request.QueryString("InvoiceID");

// Create the block object from the screen block created in CRM.
InvoiceDetailBlock = CRM.GetBlock('Invoice_Detail');

// Find the record using the QueryString returned above.
Record = CRM.FindRecord("Invoices","InvoiceID="+ThisInvoice);

// Pass the record object to the Screen block for execution later.
InvoiceDetailBlock.ArgObj = Record;
Container = CRM.GetBlock("container");

//Add a block to the container.
Container.AddBlock(InvoiceDetailBlock);

// Set the buttons to be displayed in the block.
Container.DisplayButton(Button_Default) = false;

// Write container to screen.
CRM.AddContent(Container.Execute());
Response.Write(CRM.GetPage());

%>

To see the results, open a Company record in Sage CRM, and click the Invoices tab. A list of
invoices for the Company record is displayed. The fields that are configured as links are formatted
as hypertext.

To open the summary screen for the invoice, click an invoice number.

To return to the list, click Continue.

Sage CRM 2023 R2 - Developer Guide Page 105 of 403

Adding new data entry and maintenance screens
This example illustrates how to add a new table to store customer-specific information in Sage
CRM. You can edit or delete information in the table as required.

For example, you can use the new table to store company information needed after an opportunity
has been closed, and before engineers start the implementation.

l Step 1: Create a new table

l Step 2: Add the installed base tab

l Step 3: Create a List object for installed base

l Step 4: Create the installed base screen

l Step 5: Create one or multiple ASP pages to display records

l Step 6: Configure reporting on installed base records

The steps in this example are applicable to Company, Person, Case, Lead, and Opportunity entities.

Step 1: Create a new table

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Advanced Customization | Tables And
Databases.

3. Click Create Table to create a new database table called InstallBase.

4. Use the following options:

l ID Field Name. Enter inst_installbaseid.
l Column Prefix. Enter inst.
l Company ID Field. Enter inst_companyId.

5. Click Save.

Step 2: Add the installed base tab

1. Go to <My Profile> | Administration | Customization | Company | Tabs.

2. Add a tab to the company tab group.

3. From Action, select customfile.

4. In Custom File, enter the ASP page name, installbase.asp.

5. Click Update and then click Save.

Sage CRM 2023 R2 - Developer Guide Page 106 of 403

Step 3: Create a List object for installed base

1. Go to <My Profile> | Administration | Customization | InstallBase | Lists.

2. Click New.

3. Enter a list name and select the table on which it's based and click Save.
Note the name of the list because you'll need to reference this name from the ASP page.

4. Click the list name and add the table columns to be displayed in the list.

5. To enable links between a list entry and the summary screen for the entry, click inst_
companyid.

6. Use the following options:

l Hyperlink To Field. Select Custom Jump.
l Custom File. Enter the name of the ASP file that displays an individual item.
l Custom ID Field. Enter the name of the field in the new table that uniquely
identifies each record.

7. Click Update and then click Save.

Step 4: Create the installed base screen

1. Go to <My Profile> | Administration | Customization | InstallBase | Screens.

2. Click New.

3. Customize the new screen to add the fields that you want to display.
For more information about screen customization, see the System Administrator Help.

Step 5: Create one or multiple ASP pages to display records

Depending on how many records you want to display, click the corresponding link below and
complete the provided steps:

l Create an ASP page to display a single record

l Create ASP pages to display multiple records

Create an ASP page to display a single record

This example creates an ASP page to display a single record in the new table if it doesn't already
exist.

1. Create a custom ASP page to view and edit installed base records whose name matches the
name specified in the tab group for Company. You can start with a sample Entry Group ASP

Sage CRM 2023 R2 - Developer Guide Page 107 of 403

page and include statements in the main block of the ASP page. For more information, see
Creating an ASP page.

2. Retrieve the identifier value for the current Company and store it in a variable.

CompanyId = CRM.GetContextInfo("Company","Comp_CompanyId");

3. Create an instance of the installed base screen and assign it to a variable.

InstallBase = CRM.GetBlock("Install Base Details");

4. Create a record for the installed base record and specify which record to display. See if the
record already exists. If it doesn't, create a new record.

record = CRM.FindRecord("InstallBase","companyid="+CompanyId);

if (record.eof) {
 record = CRM.CreateRecord("InstallBase");
 record("CompanyId") = CompanyId;
 InstallBase.Title = "New Install Base Details";
}

5. Display the screen using the record as the argument.

CRM.AddContent(InstallBase.Execute(record));
Response.Write(CRM.GetPage());

6. This allows the user to add or edit installed base details for each customer by clicking on
the Installed Base tab for a Company. The first time the tab is selected, a record is added
for the Company. Thereafter, when the tab is selected, the record is shown for editing.

Here's the installbase.asp script.

<!-- #include file ="sagecrm.js" -->

<%

// Get the Id of the current company.
CompanyId = CRM.GetContextInfo("Company","Comp_CompanyId");

// Create the Screen Block.
InstallBase = CRM.GetBlock("Install Base Details");

// Find the record in the table for this company.
record = CRM.FindRecord("InstallBase","Inst_CompanyId="+CompanyId);

if (record.eof)
{

// If the record does not exist then create one and set the company ID.
 record = CRM.CreateRecord("InstallBase");
 record("Inst_CompanyId") = CompanyId;
 InstallBase.Title = "New Install Base Details";}

Sage CRM 2023 R2 - Developer Guide Page 108 of 403

else

{
 InstallBase.Title = "Edit Install Base Details";
 }

if (CRM.Mode <= 1)
{

 CRM.Mode = 1;
 }

// Display the record.
CRM.AddContent(InstallBase.Execute(record));
Response.Write(CRM.GetPage());

%>

Create ASP pages to display multiple records

This example creates ASP pages to display multiple records in the new table for each customer. It
creates two custom pages; one to view a list of records and another to jump to individual records.

1. Create a custom page whose name matches the name specified in the tab group for
Company. For a sample Entry Group ASP page, see Create an ASP page to display a
single record .

2. Include statements in the main block of the ASP page to perform the following tasks.

l Retrieve the identifying value for the current Company and assign it to a variable.

CompanyId = CRM.GetContextInfo("Company","Comp_CompanyId");

l Create a block for the Installed Base List and assign it to a variable. The list name is
the name of the list created in Step 3: Create a List object for installed base.

InstallBase = CRM.GetBlock("installbaselist");

l Write the list to the screen by executing the List block, telling it to show records for
this company only.

CRM.AddContent(InstallBase.Execute("Inst_CompanyId="+ThisCompany));

l Add a New button to the screen to allow new records to be added. This calls another
ASP page.

CRM.AddContent(CRM.Button("New","new.gif",CRM.Url("InstallBaseEdit.asp")));
Response.Write(CRM.GetPage());

Sage CRM 2023 R2 - Developer Guide Page 109 of 403

3. Create another custom page to jump to view/edit/delete individual records. The page name
is the name of the page specified in Custom Action File in Step 3: Create a List
object for installed base.

4. Include statements in the main block of the ASP page to perform the following tasks:

l Retrieve the ID value of the record that's viewed from the Query string.

ThisInstallBase = Request.QueryString("Inst_InstallBaseId");

l Create a block for the Installed Base screen and assign it to a variable.

InstallBaseItem = CRM.GetBlock("InstallBaseDetailsBox");

l Turn on the Delete button on the block to allow existing records to be deleted.

DisplayButton(Button_Delete) = true;

l Turn on the Continue button to allow users to return to the list.

DisplayButton(Button_Continue) = true;

l Check if this is an existing record or if a new record must be created. Create the
Record object if required. If it's a new record, the exact Company ID must be set and it
must go straight into edit mode.

if (!Defined(ThisInstallBase))
{
 CompanyId = CRM.GetContextInfo("Company","Comp_CompanyId");
 InstallBaseRecord = CRM.CreateRecord("InstallBase");
 InstallBaseRecord("Inst_CompanyId") = CompanyId;
}

if (CRM.Mode <= Edit)
{

 CRM.Mode = Edit;
 }

else
{

 InstallBaseRecord = CRM.FindRecord("InstallBase","Inst_
InstallBaseId="+ThisInstallBase);
 }

5. Display the block, passing in the Record object. Note that the edit, delete, and add
functionality is handled by the block internally.

The Installbaselist.asp script is displayed below.

<!-- #include file ="sagecrm.js" -->

Sage CRM 2023 R2 - Developer Guide Page 110 of 403

<%

// Get the value of the current Company ID.
ThisCompany = CRM.GetContextInfo("Company","Comp_CompanyId");

// Create the List Block.
InstallBase = CRM.GetBlock("installbaselist");

// Display the List.
CRM.AddContent(InstallBase.Execute("Inst_CompanyId="+ThisCompany));

// Add the New button to allow user to add new records for this company.
CRM.AddContent(CRM.Button("New","new.gif",CRM.Url("InstallBaseEdit.asp")));
Response.Write(CRM.GetPage());

%>

Step 6: Configure reporting on installed base records

1. Do one of the following:

l To create a view for the external table, go to <My Profile> | Administration |
Customization | Installed Base | Views.

l To create a new report category for Installed Base, go to Main Menu | Reports |
New Report Category.

2. Create a report in the new category based on the Installed Base view.

To see the results, open a Company, and click the Installed Base tab. A list of installed base
records for the Company is displayed. The fields that are configured as links are formatted as
hypertext.

l To edit or delete the summary screen for the record, click Record.

l To add new records from the list screen, click New.

The Company ID on the Installed Base table is an integer value. To display the Company name
(rather than the ID) in a report, set the Entry Type of the company ID field to Search Select,
using the Company entity.

For more information about creating views, report categories, and reports, see the System
Administrator Help.

You can create a view that links the Installed Base table with another table so that more fields are
available on the report. For example, the Company table.

Sage CRM 2023 R2 - Developer Guide Page 111 of 403

Using UpdateRecord in an entity-level script
This example uses the UpdateRecord function in an entity-level script. The script is triggered when
Company is updated. When company type changes from Prospect to Customer, a record is created
in an external table called Invoices on a third-party database called External.

The External database and the Invoices table are not supplied with the sample data in Sage CRM.

1. Create a new script. For instructions, see Creating a script.
When creating your script, do the following:

l From Script Type, select Entity Level.

l In Table level script, within the function UpdateRecord section, enter the
following script:

function UpdateRecord()
{

var sType = Comp_Type;
var sOldType = _HIDDENComp_Type;
if ((sType != null) && (sType.toLowerCase() == 'customer') && (sOldType != null) &&

(sOldType.toLowerCase() == 'prospect'))
{
// company type changed from Prospect to Customer
// so create record in Invoices table
// must work out what the next id is for the invoice table

 sql = 'DECLARE @returnkey integer '+ 'SELECT @returnkey = (select count(*) from
Invoices)';
 sql+= 'SELECT @returnkey as retkey';
 q = CRM.CreateQueryObj(sql,'external');
 q.SelectSql();
 NextInvoice = Number(q.FieldValue('retkey')) + 1;
 NewInvoice = CRM.CreateRecord('Invoices');
 NewInvoice.InvoiceId = NextInvoice;
 NewInvoice.customerid = CRM.GetContextInfo('Company', 'Comp_CompanyId');
 NewInvoice.description='New Customer Invoice';
 now = new Date();
 NewInvoice.InvoiceDate = (now.getMonth()+1) + '/'+ now.getDate() + '/'+ now.getYear
();
 NewInvoice.VAT = Number('120.00');
 NewInvoice.Amount = Number('800.00');
 NewInvoice.Currency = 'EUR';
 NewInvoice.SaveChanges();
 }
}

2. Click Save.

Sage CRM 2023 R2 - Developer Guide Page 112 of 403

Using InsertRecord in a table-level script
This example uses the InsertRecord function in a table-level script. The script assigns new cases
to the account manager of the selected company. You must disable Workflow for Cases before
trying this example.

1. Create a new script. For instructions, see Creating a script.
When creating your script, do the following:

l From Script Type, select Table Level.

l In Table level script, within the function InsertRecord section, enter the
following script:

function InsertRecord()
{

// when case is created this sets the assigned user to be the account // manager of the
company selected
iPrimaryUserID = CRM.getContextInfo('company','comp_primaryuserid');

if (iPrimaryUserID > 0) {
 Values('case_assigneduserid') = iPrimaryUserID;
 }

}

2. Click Save.

Now when you create a new case for a Company but don't assign the case to a user, the case is
automatically assigned to the company account manager when you save it.

Using PostInsertRecord in a table-level script
You can include the record ID generated by the InsertRecord function in the PostInsertRecord

function of the same script. This example uses the PostInsertRecord function in a table-level
script to send a communication suggesting a follow-up call to the company account manager when
a new case is created.

Use PostInsertRecord to insert or update other records using the ID of the record that has just
been inserted. You can't update the current record in the PostInsertRecord function as it's
already been saved. You can read values from the Values collection, however any changes to the
Values collection won't take effect.

1. Open your table-level script.
For more information on how to create a table-level script, see Creating a script.

Sage CRM 2023 R2 - Developer Guide Page 113 of 403

2. Enter the following script in Table Script within the function PostInsertRecord section.

function PostInsertRecord()
{
 intid = CRM.getContextInfo('company','comp_companyid');

var d=new Date();
var CmLiRec,CommRec;
var CompRec=CRM.FindRecord("Company","Comp_CompanyId="+intid);
if (CompRec.Comp_PrimaryUserId +""!="undefined")
{

 CommRec=CRM.CreateRecord("Communication");
 CommRec.Comm_Action='PhoneOut';
 CommRec.Comm_Type='Task';
 CommRec.Comm_Status='Pending';
 CommRec.Comm_note="Make follow up call to client to find out
 details of case and assure action";
 CommRec.Comm_Priority='Normal';
 CommRec.SaveChanges();
 CmLiRec=CRM.CreateRecord("Comm_Link");
 CmLiRec.CmLi_Comm_CommunicationId=CommRec.Comm_CommunicationId;
 CmLiRec.Cmli_Comm_CompanyId=intid;
 CmLiRec.Cmli_Comm_NotifyTime=d.getVarDate();
 CmLiRec.Cmli_Comm_UserId=CompRec.Comp_PrimaryUserId;
 CmLiRec.SaveChanges();
 }
}

3. Click Save.

Create a new case and note the user to whom it's assigned. Log on as that user and view the
created task in the calendar.

Using UpdateRecord in a table-level script
This example uses the UpdateRecord() function in a table-level script. The script sets all
opportunities associated with a company to Stage Sale Closed, when the user changes the status
to Archive.

1. Go to <My Profile> | Administration | Customization | Company | TableScripts.

2. Click New, and then create a new table-level script.
For more information about the options you need to complete, see Creating a script.
When creating your script, do the following:

l From Script Type, select Table Level.

l In Table Script, within the function UpdateRecord section, enter the following
script:

function UpdateRecord()

Sage CRM 2023 R2 - Developer Guide Page 114 of 403

{
// if company Status is changed to Archive then set all its companies
// Opportunities to be Sale Closed
if (Comp_Status == 'Archive')
{
// sql string that will do the update for this company

 sql = "UPDATE Opportunity SET Oppo_Stage='Sale Closed'
 WHERE Oppo_PrimaryCompanyId=";
 sql+=CRM.GetContextInfo('Company','Comp_CompanyId');
 UpdateQuery = CRM.CreateQueryObj(sql);
 UpdateQuery.ExecSql();
 }
}

3. Click Save.

Open a Company Summary, change the Status to Archive, and click the Opportunities tab.
The stage of every Opportunity related to the Company is set to Sale Closed.

Using DeleteRecord in a table-level script
This example uses the DeleteRecord() function in a table-level script. The script checks whether
there are any outstanding leads associated with a person when a Person record is deleted. If there
are any outstanding leads, a message is displayed.

1. Go to <My Profile> | Administration | Customization | Person | TableScripts.

2. Click New, and then create a new table-level script.
For more information about the options you need to complete, see Creating a script.
When creating your script, do the following:

l From Script Type, select Table Level.
l In Table Script, within the function DeleteRecord section, enter the following
script:

function DeleteRecord()
{

var ThisPersonId = CRM.GetContextInfo('person','pers_personid');
var sCriteria = "lead_primarypersonid="+ThisPersonId+" and lead_deleted is null and

lead_status <> 'Opportunity'";
var LeadRecord = CRM.FindRecord("Lead",sCriteria);
if(!LeadRecord.eof)
{

 CheckLocks=false; ErrorStr='There are outstanding leads';
 Valid = false;
 }
}

3. Click Save.

Sage CRM 2023 R2 - Developer Guide Page 115 of 403

Open a Person record that has an associated Lead and then delete the Person record. The warning
message is displayed.

Getting a list of field types used in
the system
You can run the following SQL query against the Sage CRM database to get a list of all field types
used in the system:

SELECT DISTINCT dbo.Custom_Edits.ColP_EntryType,
CONVERT(nVARchar(32), dbo.Custom_Captions.Capt_US) as "Caption"
FROM dbo.Custom_Captions RIGHT OUTER JOIN dbo.Custom_Edits
ON dbo.Custom_Captions.Capt_Code =
CONVERT(nVARchar(32), dbo.Custom_Edits.ColP_EntryType)
WHERE (dbo.Custom_Captions.Capt_Family = N'EntryType')

For more information about possible field types, see EntryType.

Sage CRM 2023 R2 - Developer Guide Page 116 of 403

Graphics

In Sage CRM, you can implement graphics by using ASP pages. Graphics can be generated
dynamically within Sage CRM. A graphic can be data aware and representative of data stored at the
time it's generated. You can customize a graphic to vary depending on the user that displays it.
Graphics can be generated with just a few commands, or customized at length.

For more information about the methods you can use to work with graphics in Sage CRM, see
CRMGraphicBlock methods.

l Considerations for using graphics

l Supported graphic file formats

l Using external images

l Changing image color

l Clearing an image

l Applying dithering, zooming, or transparency

l Setting color, line width, and style

l Filling solid shapes with color

l Changing current font

l Using animation

l Suppressing errors when processing an image

l Code samples

Sage CRM 2023 R2 - Developer Guide Page 117 of 403

Considerations for using graphics
l Avoid large images and use GIF images where possible.Operating system and
hardware may have limitations when handling graphic files.
To convert images to .gif files, you can use the SaveAsGifs method exposed by the
CRMGraphicBlock object. For example:

<script language=javascript>

if (screen.colorDepth<=8)
{
 graphic.SaveAsGifs=true
}

</script>

l Be conservative with animations. Large animations can consume a lot of processor time
on a client machine. Consider decompression of a 50-frame animated .gif file that is 250 x
250 pixels using 24-bit color. In this case, all 50 frames require roughly 9 MB of data if
stored in memory simultaneously (250 * 250 * (24/8) * 50).

If the .gif file is animated over three seconds, that's 3 MB per second of data, which
requires a lot of processor power.
When an animated .gif file is looping, the image is continually decoded from a copy of the
animation stored on disk. Therefore, processor power is used instead of consuming large
amounts of memory.

Supported graphic file formats
In Sage CRM, you can use the Graphic block to work with the following graphic file formats:

l JPEG. Default format for graphics and charts. 16 million colors (24 bit).
High level of compression (small file size). Does not support animation and transparency.

l GIF. 256 colors (8 bit). High level of compression (small file size). Supports animation and
transparency.

l BMP. Various color depths. No compression (large file size).

Sage CRM 2023 R2 - Developer Guide Page 118 of 403

The characteristics of these formats can affect the image quality of your graphic or chart. If you
don't require animation and transparency, use JPEG rather than GIF, as JPEG allows your image to
contain a much greater color depth.

Fusion charts are rendered as JPEG in ASP and .NET, and they are rendered as HTML5 in the
Classic and Interactive Dashboard.

To save graphics as JPEG or GIF, you can use the SaveAsGifs and SaveAsJPG(text) methods
exposed by the CRMGraphicBlock object.

For example:

var graphic;
graphic = CRM.GetBlock('graphic');
graphic.SaveAsGifs = true;

Using external images
You can save images and load them from the server. Then, you can use the CRMGraphicBlock
object generate part of the image from the loaded images. The CRMGraphicBlock object
provides the SaveAsGifs and SaveAsJPG(text) methods that allow you to convert any loaded
image to a JPEG or GIF image, as these are the standard types supported by most web browsers.

You can merge an external image onto a graphic. A color is passed as the transparent color for the
external image. You can specify the position of the image with X and Y parameters. If you don't
specify the position, it appears starting from 0,0 in the top left hand corner of your graphic.

Example 1

Effect('Merge','c:\\Person.ico');

Example 2

Effect('Merge','c:\\Person.ico,50,50');

Changing image color
You can change a particular color in an image.

The following example changes all instances of blue to red:

Sage CRM 2023 R2 - Developer Guide Page 119 of 403

Effect('ChangeColor','Blue,Red');

Clearing an image
You can clear an image completely and wash it with a particular color. If you don't specify a color,
the canvas is cleared as white.

Example

Effect('Clear','Blue');

Applying dithering, zooming, or
transparency
You can use the Effect(Mode, Value) method provided by the CRMGraphicBlock object to apply
a number of special effects to an image, including dithering, zooming, and transparency.

l Dithering. You can apply a dithering mode to an image to help improve its appearance,
especially where color is limited. The available modes are:

l Burkes

l FloydSteinberg

l JaJuNi

l Sierra

l SteveArche

l Stucki

The following example shows how to apply a dithering mode to an image:

Effect('Dither','FloydSteinberg');

Sage CRM 2023 R2 - Developer Guide Page 120 of 403

l Zooming. You can magnify an image using the Zoom parameter and a percentage of zoom
required. By default, the area to be zoomed is the center of the image.
Example:

Effect('Zoom','200');

l Transparency. Available only in GIF images. You can enable transparency to make any
whiteness in an image become transparent.
The following example shows how to enable transparency:

Effect('Transparency','true');

Setting color, line width, and style
You can use the Pen(Mode, Value) method to set the color, line width, and style of your drawings.

Setting a color
Use the following syntax to set the color:

Pen('Color','<ColorName>');

Where <ColorName> is the name of the color you want to use.

Example

Pen('Color','Blue');

Alternatively, you can use the PenColor method:

PenColor('Blue');

Sage CRM 2023 R2 - Developer Guide Page 121 of 403

Setting line width
Use the following syntax to set the line width:

Pen('Width','<LineWidthValue>');

Where <LineWidthValue> is the thickness of the line.

Example

Pen('Width','3');

Alternatively, you can use the PenWidth method:

PenWidth('3')

Setting line style
Use the following syntax to set the line style:

Pen('Style','<StyleValue>');

Where <StyleValue> can take one of the following values:

l Solid. Specifies to use solid line.

l Dash. Specifies to use dashes.

l Dot. Specifies to use dots.

l DashDot. Specifies to use alternating dashes and dots.

l DashDotDot. Specifies to use a series of dash-dot-dot combinations.

l Clear. Specifies that no line is used. Use this value to omit the line around shapes that
draw an outline using the current pen.

Examples

Pen('Style','Dot');

Sage CRM 2023 R2 - Developer Guide Page 122 of 403

Pen('Style','Solid');

Pen('Style','Clear');

Filling solid shapes with color
You can use the Brush(Mode, Value) method exposed by the CRMGraphicBlock object to fill
solid shapes, such as rectangles and ellipses, with a color or pattern. The pattern may be a
predefined image loaded by using the Brush(Mode, Value) method.

Specifying a color
Use the following syntax to specify the color with which you want to fill a shape:

Brush('Color','<ColorName>');

Where <ColorName> is the name of the color you want to use.

Example

Brush('Color','Blue');

Loading an image
Use the following syntax to load an image and use it in all painting effects:

Brush('Load','<PathToImage>');

Where <PathToImage> is the full path to the image file you want to use. You can specify one of
the following file types: .ico, .emf/..wmf, .bmp, .gif, or .jpg.

Example

Brush('Load','c:\\winnt\\winnt.bmp');

Sage CRM 2023 R2 - Developer Guide Page 123 of 403

Specifying area to fill in
Use the following syntax to specify the area you want to fill in:

Brush('Fill','<Left>,<Top>,<Right>,<Bottom>');

Where <Left>, <Top>, <Right>, and <Bottom> define the rectangle area to be filled in.

Example

Brush('Fill','0,0,100,100');

Specifying a predefined style
Use the following syntax to choose a predefined style for filling in the specified area:

Brush('Style','<Value>');

Where <Value> can be one of the following:

l Bdiagonal

l Clear

l Cross

l DiagCross

l Fdiagonal

l Horizontal

l Solid

l Vertical

Example

Brush('Style','DiagCross');

Sage CRM 2023 R2 - Developer Guide Page 124 of 403

Changing current font
You can change the current font used by the TextOut and TextOutCenter methods of the
CRMGraphicBlock object. For example, you can select a font to use, determine the font size,
specify the font color, and apply a rotation effect to the text output.

Selecting a font
Use the following syntax to select a font:

Font('Name','<FontName>');

Where <FontName> is the name of the font installed on the Sage CRM server.

Example

Font('Name','Times New Roman');

Setting font size
Use the following syntax to set the font size:

Font('Size','<FontSize>');

Where <FontSize> is the font size you want to use.

Example

Font('Size','24');

Alternatively, you can use the FontSize method:

FontSize('24');

Sage CRM 2023 R2 - Developer Guide Page 125 of 403

Setting font color
Use the following syntax to set the font color:

Font('Color','<ColorName>');

Where <ColorName> is the name of the font color you want to use.

Example

Font('Color','Blue');

Alternatively, you can use the FontColor method:

FontColor('Blue');

Setting font style
Use the following syntax to set the desired font style:

Font('<Parameter>','<Value>');

In this syntax, use one of the following parameters:

l Underline. Toggles between underlined and normal font. This parameter can take one of
the following values:

l True. Underlines the current font.

l False. Specifies to use normal font.
l Italic. Toggles between italic and normal font. This parameter can take one of the
following values:

l True. Italicizes the current font.

l False. Specifies to use normal font.
l Strikeout. Toggles between striked out and normal font. This parameter can take one of
the following values:

l True. Adds a line through the middle of the current font.

l False. Specifies to use normal font.

Examples

Sage CRM 2023 R2 - Developer Guide Page 126 of 403

Font('Underline','True');

Font('Italic','False');

Font('Strikeout','False');

Rotating text output
Use the following syntax to rotate your text:

Font('Rotate','<Angle>');

Where <Angle> is the angle by which to rotate the text.

Example

Font('Rotate','45');

Using animation
You can use the Animation(Mode, Value) method exposed by the CRMGraphicBlock object to
animate your graphics. The Animation(Mode, Value) method has the following syntax:

Animation('<Parameter>','<Value>');

In this syntax, you can use the following parameters:

l Add. Adds the next frame in a series. If no frames have been added previously, adds the
first frame.

l Delay. Specifies delay for the animation. If this parameter is left blank, the default delay is
used.

l Loops. Loops an animation a specified number of times or indefinitely. By default, an
animation is shown one time. To repeat an animation indefinitely, set this parameter to 0.

Examples

Sage CRM 2023 R2 - Developer Guide Page 127 of 403

Animation('Add','50');

Animation('Add','');

Animation('Delay','50');

Animation('Loop','0');

Suppressing errors when processing an
image
By default, the CRMGraphicBlock object shows all errors encountered when processing an image.

You can suppress errors by using the DisplayErrors parameter of the Effect(Mode,
Value)method exposed by the CRMGraphicBlock object, as shown in the example below:

Effect('DisplayErrors','false');

Code samples
l Steps to add a progress bar

l Steps to add a pipeline to show Opportunities for a Company

l Implementing animation

Steps to add a progress bar
This example adds a progress bar that illustrates Opportunity Certainty for the current opportunity.
You can view the complete code in Steps to add a progress bar.

Step 1: Create a custom ASP file

Add the following code to the file:

Sage CRM 2023 R2 - Developer Guide Page 128 of 403

1. Get the current Opportunity Certainty ID and store it in a variable:

var progress=CRM.GetContextInfo('opportunity','oppo_certainty');

2. Get a graphic block and store it in a variable:

var progressbar=CRM.GetBlock('graphic');

3. Define the dimensions and style of the progress bar.
For example:

with (progressbar)
{
 ImageWidth=100;
 ImageHeight=20;
 Description='Opportunity Certainty';
 GradientFill('Blue','White','L',256);
 MoveTo(0,0);
 LineTo(99,0);
 LineTo(99,19);
 LineTo(0,19);
 LineTo(0,0);
 Rectangle(0,0,100,20);
 TextOut(40,1,progress+'%',true);
}

4. Show the progress bar on the screen by executing the graphic block:

CRM.AddContent(progressbar.Execute());
Response.Write(CRM.GetPage());

Step 2: Add a new tab and link it to your ASP file

1. In Sage CRM, go to <My Profile> | Administration | Customization.

2. Click Company, and then click Tabs.

3. In the Tab Group Name column, click Company.

4. Under Properties, use the following options:

l Caption. Enter the new tab name.

l Action. Select customfile.

l Custom File. Enter the name of the custom ASP file you created in Step 1: Create
a custom ASP file.

5. Click Update, and then click Save.

To view the results, go to an Opportunity record and click the new tab you created.

Sage CRM 2023 R2 - Developer Guide Page 129 of 403

Code sample: Adding a progress bar

<!-- #include file ="sagecrm.js" -->

<html>
<body>
<%

var progress=CRM.GetContextInfo('opportunity','oppo_certainty');
var progressbar=CRM.GetBlock('graphic');

with (progressbar)
{
 ImageWidth=100;
 ImageHeight=20;
 Description='Opportunity Certainty';
 GradientFill('Blue','White','L',256);
 MoveTo(0,0);
 LineTo(99,0);
 LineTo(99,19);
 LineTo(0,19);
 LineTo(0,0);
 Rectangle(0,0,100,20);
 TextOut(40,1,progress+'%',true);
}

CRM.AddContent(progressbar.Execute());
Response.Write(CRM.GetPage());

%>
</body>
</html>

Steps to add a pipeline to show Opportunities for
a Company
You can graphically represent data over a chosen cross section by using a pipeline graphic. To add
a pipeline graphic, you need to use methods exposed by the CRMPipelineGraphicBlock object.

When a user clicks a section of the pipeline graphic, the corresponding list is filtered to show
entries related to that section. You can automatically display a pipeline graphic in the
Opportunities, Cases, and Leads list screens in the context of My CRM, Company, People,
Opportunity, Case, and Lead.

The example below displays the forecasted value of various stages of opportunities for a Company.
Within the ASP, you must pass the pipeline the user's context and a field to uniquely identify the
current company.

Sage CRM 2023 R2 - Developer Guide Page 130 of 403

Step 1: Create a custom ASP file

Add the following code to the file:

1. Get the ID of the current Company and store it in a variable:

var CompId=CRM.GetContextInfo('company','comp_companyid');

2. Retrieve details about the opportunities from the Sage CRM database and store them in a
variable as a string:

var SQLPipe='select sum(Oppo_Forecast) as a,' +'Oppo_Stage from vOpportunity ' +'where
(Oppo_PrimaryCompanyid='+CompId+') ' +'group by Oppo_Stage order by Oppo_Stage';

3. Convert the string stored in the SQLPipe variable into an object, store that object in
another variable, and then execute the stored object:

var Querypipe=CRM.CreateQueryObj(SQLPipe);
Querypipe.SelectSQL();

4. Get the pipeline block and store it in a variable.

var pipe=CRM.GetBlock('pipeline');

5. Add pipeline entries and display the pipeline on the screen.
For example:

while (!Querypipe.EOF)
{
 Label=Querypipe('Oppo_Stage');
 Value=Querypipe('a');
 pipe.AddPipeEntry(Label,parseFloat(Value),Value+"");
 Querypipe.Next();
}

pipe.Selected=2;

// The summary allows the addition of any desired text in HTML format for the selected
pipe section.
// This example shows a simple hard coded value.
pipe.Pipe_Summary='<Table><td class=TableHead>Qualified(70)</td></table>';
CRM.AddContent(pipe.Execute());
Response.Write(CRM.GetPage());

For the complete ASP page code sample, see Code sample: Adding a pipeline.

6. Save your ASP file to the CustomPages folder in the Sage CRM installation directory.
The default location of the CustomPages folder is %ProgramFiles
(x86)%\Sage\CRM\CRM\WWWRoot

Step 2: Add a new tab and link it to your ASP file

Sage CRM 2023 R2 - Developer Guide Page 131 of 403

1. In Sage CRM, go to <My Profile> | Administration | Customization.

2. Click Company, and then click Tabs.

3. In the Tab Group Name column, click Company.

4. Under Properties, use the following options:

l Caption. Enter the new tab name.

l Action. Select customfile.

l Custom File. Enter the name of the custom ASP file you created in Steps to add a
pipeline to show Opportunities for a Company.

5. Click Update, and then click Save.

Code sample: Adding a pipeline

<!-- #include file ="sagecrm.js" -->

<%

var CompId=CRM.GetContextInfo('company','comp_companyid');
var SQLPipe='select sum(Oppo_Forecast) as a,' +'Oppo_Stage from vOpportunity '+'where (Oppo_
PrimaryCompanyid='+CompId+') ' +'group by Oppo_Stage order by Oppo_Stage';
var Querypipe=CRM.CreateQueryObj(SQLPipe);
Querypipe.SelectSQL();
var pipe=CRM.GetBlock('pipeline');
while (!Querypipe.EOF)
{
 Label=Querypipe('Oppo_Stage');
 Value=Querypipe('a');
 pipe.AddPipeEntry(Label,parseFloat(Value),Value+"");
 Querypipe.Next();
}

// Setting the active section of the pipeline.
// This can be altered to be variable controlled.
pipe.Selected=2;

// The summary allows the addition of any desired text in HTML format for the selected pipe
section.
// This example shows a simple hard-coded value.
pipe.Pipe_Summary='<table><td class=TableHead>Qualified(70)</td></table>';
CRM.AddContent(pipe.Execute());Response.Write(CRM.GetPage());

%>

Implementing animation
This sample code implements animation.

Sage CRM 2023 R2 - Developer Guide Page 132 of 403

<!-- #include file ="sagecrm.js"-->
<%

var progress=70;
var anim=CRM.GetBlock('graphic');
with(anim)
{
 ImageWidth=130;
 ImageHeight=20;
 Pen('Color','Black');
 MoveTo(0,0);
 LineTo(99,0);
 LineTo(99,19);
 LineTo(0,19);
 LineTo(0,0);
 Rectangle(0,0,100,20);
 Pen('Color','Blue');

for (y=1;y<=progress;y++)
{

 MoveTo(y,1);
 LineTo(y,19);
 TextOutCenter(101,0,129,19,y+'%',false,false);
 Animation('add','10')
 }
}

var container=CRM.GetBlock('container');
with(container)
{
 AddBlock(anim);
 DisplayButton(Button_Default)=false;
}

CRM.AddContent(container.Execute());
Response.Write(CRM.GetPage());

%>

Sage CRM 2023 R2 - Developer Guide Page 133 of 403

Sage CRM 2023 R2 - Developer Guide Page 134 of 403

Workflow

l Changing workflow state

l Moving records to another workflow

l Identifying workflow context

l Identifying workflow transitions

l Scripting escalation rules in a component

l Activating workflow for secondary or custom entities

l Using ASP pages in workflow

l Creating workflow on an external table

l Using client side code in workflow

Changing workflow state
Warning: Always back up your database before editing workflow tables.

You can change the stage of a record in workflow by editing the WorkFlowInstance table.

When an entity record is created in a workflow, the workflow ID on the record maps to an instance
ID in the WorkFlowInstance table. The WorkFlowInstance table is linked to the WorkFlowState table
and determines the current state and associated rules for the record.

To change the record in the WorkFlowInstance table to another state, do the following.

1. Look in the Workflow table to find the workflow ID.

2. Run a select from the WorkFlowInstance table for the relevant entity workflow. This returns
the state ID for each stage of the workflow.

3. Update the state ID of the WorkFlowInstance record to be the new state. For example, if the

Sage CRM 2023 R2 - Developer Guide Page 135 of 403

instance ID is 5224 and the state ID for the new state is 62, run the following:

UPDATE workflowinstance SET WkIn_CurrentStateId = 62 WHERE WkIn_instanceId = 5224

4. Refresh the UI to display the changes.

Tip: You can change workflow state using an ASP page. For more information, see ASP page
that changes workflow state.

ASP page that changes workflow state
The following code is from a button on an ASP page that's called from a workflow rule associated
with the communication entity. The button appears on the communication screen. When the user
clicks the button, the communication is closed, the stage is changed, and the workflow state for
the instance is updated.

The code shows how the workflow ID and the workflow instance are used to set the workflow state.

var strKeyID= "key6";
var Id = new String(Request.Querystring(strKeyID));
var intRecordId = 0;
if (Id.indexOf(",") > 0)
{

var Idarr = Id.split(",");
 intRecordId = Idarr[0];
}

else if (Id != "")
{

 intRecordId = Id;
 }

//Retrieve Record
var myRecord = CRM.FindRecord("communication","comm_communicationid="+intRecordId);
myRecord.comm_status = 'Complete';
myRecord.SaveChanges();

//
var myOppoRecord = CRM.FindRecord("opportunity","oppo_opportunityid="+CRM.GetContextInfo
("opportunity","oppo_opportunityid"));
myOppoRecord.oppo_stage = 'Qualified';
myOppoRecord.SaveChanges();

//
// Please note that the wkin_currentstateid has to be checked with
// workflow definitions
var workflowinstanceRecord = CRM.FindRecord
("workflowinstance","wkin_instanceid="+
myOppoRecord.oppo_workflowid);
workflowinstanceRecord.wkin_currentstateid = 42;
workflowinstanceRecord.SaveChanges();

Sage CRM 2023 R2 - Developer Guide Page 136 of 403

//
Response.Redirect(CRM.URL(260));

Moving records to another workflow
There are two ways to move records from one workflow to another. Both methods preserve tracking
information held in the progress tables and displayed on the tracking screen. Changes made to the
data such as completing tasks, sending mail merges, or sending emails are also preserved. You
manage both methods using an ASP page called with a global or transition rule.

1. Reset the workflow. You can create a rule attached to the entry state that lets a user
reset the workflow. This is useful if you've two valid workflows for an entity and a user
progresses along the wrong workflow. In this case, the user must cancel the connection to
the workflow and restart at the beginning of the alternative workflow. The code in the ASP
page blanks out or nulls the record's workflowid field.

1 var intRecordId = CRM.GetContextInfo("case","case_caseid");
2 var myRecord = CRM.FindRecord("case","case_caseid="+intRecordId);
3 myRecord.case_workflowid = null;
4 myRecord.SaveChanges();
5 Response.Redirect(CRM.URL(281));

2. Jumping to another workflow. You can switch from one workflow directly into another
workflow and join the new workflow at a particular stage. To do this, you must create a new
workflowinstance record and link it to the workflowstate information and the record that
must switch to the new workflow.

1 var intRecordId = CRM.GetContextInfo("case","case_caseid");
2 var myRecord = CRM.FindRecord("case","case_caseid="+intRecordId);
3 var wkinRecord = CRM.CreateRecord("workflowinstance");
4 wkinRecord.wkin_workflowid = 7; // This is the workflow id of the alternate case

workflow;
5 wkinRecord.wkin_currententityid = 3; // this is the id of the case table found in the

custom_table meta data table
6 wkinRecord.wkin_currentrecordid = intRecordId; // The ID of the Case record being

workflowed;
7 wkinRecord.wkin_currentstateid = 27; // This is the id value of the state found in the

workflowstate table.
8 wkinRecord.SaveChanges();
9 myRecord.case_workflowid = wkinRecord.wkin_instanceid; // This sets the Case as

belonging to the new workflow.
10 myRecord.SaveChanges();
11 Response.Redirect(CRM.URL(281));

Sage CRM 2023 R2 - Developer Guide Page 137 of 403

Identifying workflow context
To identify the general workflow context in create scripts, validate scripts and table level scripts,
use the following code:

if (CRM.GetContextInfo("company","comp_companyid"))
{
 Valid = false;
 ErrorStr = "We are in company context";
}

However, a workflow can have different starting points because you can define multiple primary
workflow rules. A primary workflow rule is displayed as a New button in the UI. You can control
which New button is displayed by defining a JavaScript condition for the rule. In this case, you
must know the primary workflow context to ensure you display the correct button.

To identify the primary workflow context, check the Key0 value in the QueryString of the URL. In a
workflow primary rule you can access this with the Values() collection. The following example
checks the workflow context and if it is the primary context of the company, the rule is not
displayed.

if (Values("key0")==1)
{

// Then we are in company prime context.
}

if (Values("key0")==2)
{

// Then we are in person prime context.
}

Note: Key0 is also called the Dominant Key.

Identifying workflow transitions
Several transition rules can be attached to a workflow state. You can identify the available
workflow steps using the ID of the record that you're progressing through the workflow.

For example, on an opportunity record whose ID is 11, use the following SQL to return the oppo_
workflowid (1167):

Sage CRM 2023 R2 - Developer Guide Page 138 of 403

SELECT oppo_workflowid FROM opportunity WHERE oppo_opportunityid =11

Then use the following to retrieve the workflowinstance record:

SELECT wkin_workflowid, wkin_currentstateid FROM workflowinstance WHERE wkin_instanceid = 1167

This returns the workflowid details and current state:

wkin_workflowid =2
wkin_currentstateid =10

Which you can use to find the next possible transitions:

SELECT wktr_nextstateid FROM workflowtransition WHERE wktr_workflowid = 2 and wktr_stateid = 10

Scripting escalation rules in a
component
If you create an escalation rule outside workflow and want to add it to a component, you must
create the component script code manually.

Tip: To include a workflow in a component, click <My Profile> | Administration | Advanced
Customization | Workflow | <Workflow> and click Preview List to generate the component
manager script.

The following component manager code creates a free standing escalation rule called
testescalation.

// Code to add the name of the workflow rule
FamilyType='Tags';
Family='WorkflowRule';
Code='TestEscalation';
Captions['US']='TestEscalation';
AddCaption();

// Code to add the rule
var jRuleId10130 = AddCustom_Data('WorkflowRules',
'WkRl', 'WkRl_RuleId', 'WkRl_Entity,WkRl_Caption,
WkRl_RuleType,WkRl_Image,WkRl_Table,

Sage CRM 2023 R2 - Developer Guide Page 139 of 403

WkRl_WhereClause,WkRl_Channel,WkRl_CustomFile,
WkRl_Order,WkRl_JavaScript,WkRl_Cloneable','
"Opportunity","TestEscalation","Time",
"WorkflowDefault.gif","Opportunity","oppo_stage =
\x27Lead\x27 and oppo_assigneduserid=#U","","",,"","",','1,2,3');

RunSql('IF NOT EXISTS (SELECT WkRl_ActionGroupId
FROM WorkflowRules WHERE
WkRl_RuleId = ' + jRuleId10130 + ' AND
WkRl_ActionGroupId IS NOT NULL) BEGIN
UPDATE WorkflowRules SET WkRl_ActionGroupId = ' + jRuleId10130 + '
WHERE WkRl_RuleId = ' + jRuleId10130 + ' END');

RunSql('DELETE FROM WorkflowActions WHERE
WkAc_ActionId IN
(SELECT AcLi_ActionId FROM WorkflowActionLinks
WHERE AcLi_ActionGroupId =
(SELECT WkRl_ActionGroupId FROM WorkflowRules
WHERE WkRl_RuleId = ' + jRuleId10130 + '))');
RunSql('DELETE FROM WorkflowActionLinks
WHERE AcLi_ActionGroupId = (SELECT WkRl_ActionGroupId FROM WorkflowRules
WHERE WkRl_RuleId = ' + jRuleId10130 + ')');

var jActionId = AddCustom_Data('WorkflowActions',
'WkAc','WkAc_ActionId', 'WkAc_Action,WkAc_Field,
WkAc_Value,WkAc_Attributes,WkAc_NewLine,
WkAc_RowSpan,WkAc_ColSpan,WkAc_Table,
WkAc_EmailTo,WkAc_EmailBCC,WkAc_EmailSubject,
WkAc_EmailBody,WkAc_Order,WkAc_Condition','
"notify","","OppoTest","","","","","Opportunity","","","","","","",','');

var LinkId = AddCustom_Data('WorkflowActionLinks',
'AcLi','AcLi_ActionLinkId','AcLi_ActionGroupId,
AcLi_ActionId',-1+','+jActionId+',','');

RunSql('UPDATE WorkflowActionLinks SET
AcLi_ActionGroupId = (SELECT WkRl_ActionGroupId FROM
WorkflowRules WHERE WkRl_RuleId = ' + jRuleId10130 + ')
WHERE AcLi_ActionLinkId = ' + LinkId);

Activating workflow for secondary or
custom entities
You can activate workflow for secondary and custom entities that are completely or partially
managed by custom application extensions (ASP pages or .NET). The screens for existing system
entities do not check for workflow. The following example activates workflow for a custom entity
called Project.

1. Add a proj_workflowid column to the Project table in the database.

2. Set datatype to integer.

Sage CRM 2023 R2 - Developer Guide Page 140 of 403

3. In the custom_tables metadata table, enter a value for Project bord_workflowidfield.

select * from custom_tables where bord_name='project'update custom_tablesset bord_
workflowidfield = 'proj_workflowid'where bord_name='project'

4. Refresh the system metadata. The Project table appears in the list of available tables when
you create a new workflow rule.

Using ASP pages in workflow
Primary, transition, conditional, and global workflow rules can call ASP pages. Escalation rules
cannot call ASP pages. Workflow rules using ASP pages are subject to the JavaScript condition
which controls whether a workflow rule is available. For more information, see Workflow in the
System Administrator Help.

You can use an ASP page in workflow to do the following:

l Control the creation of a custom entity. For more information, see Workflow properties.

l Save a new record to a workflow. For more information, see SetWorkflowInfo
(vWorkflowName, vWorkflowState).

l Carry out actions on more than one record.

l Carry out actions on an external application or database.

l Carry out a complex set of actions not in the standard set. For more information, see
Workflow properties.

For code examples, see the following:

l ASP page that changes workflow state

l Code example: ShowWorkflowButtons property

l Code example: WorkflowTable and ShowNewWorkflowButtons properties

Creating workflow on an external table
Workflow works on tables inside Sage CRM only. To apply workflow to an external table, you must
create a shadow table in Sage CRM. The data is retrieved from the external table in the ASP pages
associated with the workflow rules. The table must have a workflowid field that links the record to
the workflowinstance table.

For example, you can create the following:

Sage CRM 2023 R2 - Developer Guide Page 141 of 403

http://help.sagecrm.com/

l A foreign key on the internal Sage CRM table with a one-to-one relationship with the
external table.

l A list screen to find and display a summary page for the external table.

l A Start Workflow button that calls an ASP page to insert a record into the internal table
and attach it to the workflow.

l In addition to ASP pages, you can use conditional rules and global rules to perform actions.
The JavaScript condition can look to the external table to determine whether workflow
buttons should be displayed.

l Security policies on the shadow table that apply to the external table.

Using client side code in workflow
You can use client side code in a workflow. You can add a script to a workflow action.

The following example defines an onChange rule for the Set Column Value workflow action that's
executed on the Opportunity Certainty field.

if (this.value >10)
{

this.value = 10;
 crm.infoMessage('Maximum value of certainty at this stage is 10');
}

The following example is added to the Display Message on Screen workflow action:

<script>
// window.alert('hello world');
crm.infoMessage('hello world');
</script>

Sage CRM 2023 R2 - Developer Guide Page 142 of 403

Charts
This section provides code samples illustrating how to create charts to graphically represent
information in Sage CRM. Sage CRM includes a FusionCharts component that allows you to create
animated and interactive widgets providing various information. You can also create organization
charts.

l About animated and interactive charts

l Creating an Opportunity certainty widget

l Creating an Opportunities and Cases widget

l Creating an organization chart

Sage CRM 2023 R2 - Developer Guide Page 143 of 403

About animated and interactive charts

In this version of Sage CRM, animated and interactive charts are based on FusionCharts version 3.2.
For more information, go to www.fusioncharts.com. In ASP and .NET, FusionCharts are rendered
using JPG format.

To change the appearance of FusionCharts, you can use the following system parameters in the
Custom_SysParams table located in the Sage CRM database:

l ChartTimeoutSeconds. Specifies the timeout (in seconds) before the conversion of
FusionCharts to images starts. The resulting images are displayed on the Sage CRM user
interface.

l ReportsShowTextErrorInsteadOfImage. Allows errors. Use this parameter in combination
with the ChartUseFlash parameter. No data and no flash to be displayed as customized
images in accordance with the file names below:

l Theme/Images/no_adobeflash.jpg

l Theme/Images/no_adobeflash-US.jpg

l Theme/Images/no_data.jpg

l Theme/Images/no_data.jpg-US.jpg
l ChartOverruledWidthID. Specifies overrule width for Interactive Dashboard chart width.

l ChartOverruledHeightID. Specifies overrule height for Interactive Dashboard chart height.

l ChartOverruledWidthCD. Specifies overrule width for Classic Dashboard chart width.

l ChartOverruledHeightCD. Specifies overrule height for Classic Dashboard chart height.

Creating an Opportunity certainty widget

This topic illustrates how to use FusionCharts to create a graphic widget that shows certainty for
each Opportunity record in Sage CRM. The widget displays on the Summary tab for each
Opportunity record and looks similar to the following:

To create this widget, do the following:

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Customization | Opportunity.

3. Click the Screens tab.

4. In the Screen Name column, click OpportunityDetailBox.

5. In the Custom Content text box, enter the following code, and then click Save.

Sage CRM 2023 R2 - Developer Guide Page 144 of 403

http://www.fusioncharts.com/

Note that you may need to replace the default Sage CRM install name used in the code
below.

<script>

 crm.ready(function()
{

// Display a FustionCharts linear gauge in the Certainty field
var strScriptPath = crm.installUrl() + "FusionCharts/FusionCharts.js";

 $.getScript(strScriptPath, function (data, textStatus, jqxhr)
{

// In the path to the HLinearGauge.swf file below, crm is the default Sage
CRM install name.

// You may need to replace crm with the install name used in your
environment.

var myChart = new FusionCharts("/crm/FusionCharts/HLinearGauge.swf",
"myChartId", "200", "75", "0");
 myChart.setJSONData(

{
"chart":
{

"lowerlimit": "0",
"upperlimit": "100",
"palette": "1",
"numbersuffix": "%",
"chartrightmargin": "20"

 },

"pointers":
{

"pointer":
[

{
"value": crm("oppo_certainty").value()

 }
]
 }
 })

 myChart.render("_Dataoppo_certainty");
 });
 })

</script>

To view the created widget, go to an Opportunity record and open the Summary tab.

Creating an Opportunities and Cases widget

This topic illustrates how to use FusionCharts to create a graphic widget that shows active
Opportunities and Cases for each Company record in Sage CRM. The widget displays on the
Summary tab for each Company and looks similar to the following:

Sage CRM 2023 R2 - Developer Guide Page 145 of 403

To create this widget, do the following:

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Customization | Company.

3. Click the Screens tab.

4. In the Screen Name column, click CompanyBoxLong.

5. In the Custom Content text box, enter the following code, and then click Save.
Note that you may need to replace the default Sage CRM install name used in the code
below.

<script>

// Define variable to store data returned by Ajax requests
var myResults = {};
crm.ready(function ()
{

// Function script
var strScriptPath = crm.installUrl() + "FusionCharts/FusionCharts.js";

 $.getScript(strScriptPath, function (data, textStatus, jqxhr)
{

// Get Opportunities and Cases for each Company and store them in variables
// Make sure to properly sequence Ajax requests, because chart can only be added

after requests return data
var companyID = crm.getArg("key1");
var strOppoWhereClause = "oppo_primarycompanyid eq " + companyID;
var strCaseWhereClause = "case_primarycompanyid eq " + companyID;var successCase

= function (crmRecord)
{

 myResults.CaseCount = crmRecord.totalResults;

// Define text labels for Cases
 CaseData =

{
"label": "Cases:",
"value": myResults.CaseCount,
"tooltext": "Cases in progress" + myResults.CaseCount

 }

// Add chart to the top of the page (TopContent)
var myOutPut = "<table border=0><tbody><tr><td><div

id=chartContainer>FusionWidgets XT will load here!</div></td></tr></tbody></table>";
var x = $("#EWARE_TOP").children();
var y = $(x).children();var z = $(y).children();
var a = $(z).children("td:last");

 a.after(myOutPut);

// Define chart appearance.
// In the path to the Bar2D.swf file below, crm is the default Sage

CRM install name.
// You may need to replace crm with the install name used in your

environment.
var myChart = new FusionCharts("/crm/FusionCharts/Bar2D.swf", "myChartId",

"200", "75", "0");
 myChart.setJSONData(

{
"chart":

Sage CRM 2023 R2 - Developer Guide Page 146 of 403

{
"bgcolor": "F1F1F1",
"showvalues": "0",
"canvasborderthickness": "1",

 },

"data":
[

 OppoData,CaseData
]
 })

 myChart.render("chartContainer");
 }

var successOppo = function (crmRecord)
{

 myResults.OppoCount = crmRecord.totalResults;

// Define text labels for Opportunities
 OppoData =

{
"label": "Opportunities:",
"value": myResults.OppoCount,
"tooltext": "Opportunities in progress" + myResults.OppoCount

 }

// Get Cases for Company
 crm.sdata(

{
 entity: "cases",
 where: strCaseWhereClause,
 success: successCase
 });
 }

// Get Opportunities for Company
 crm.sdata(

{
 entity: "opportunity",
 where: strOppoWhereClause,
 success: successOppo
 });
 })
})

</script>

To view the created widget, go to a Company record and open the Summary tab.

Creating an organization chart

This topic illustrates how to create an organization chart. You can display an organization chart on
a new custom tab for each entity record you want. Below is an example organization chart:

Sage CRM 2023 R2 - Developer Guide Page 147 of 403

The following example shows how to display this chart on a new tab for each Company:

Sage CRM 2023 R2 - Developer Guide Page 148 of 403

1. Create a custom ASP file that contains the following code:

<!-- #include file ="sagecrm.js" -->
<html>
<body>
<%

// Get the orgchart block and store it in the org variable.
var org;
org=CRM.GetBlock('orgchart');

// Add the chart title. If you omit the Title parameter, no title is added.
org.OrgTree("Title","My chart");

// Optionally, specify an icon for the top-level box in the chart.
// org.OrgTree("EntityIcon","C:\\FileName.bmp");

// Optionally, specify a custom background for each box in the chart.
// org.OrgTree("EntityImage","C:\\FileName.bmp");

// Add the top level of the chart (CEO).
org.OrgTree("Add",",CEO,false,");

// Add Marketing Manager.
org.OrgTree("Add","CEO,Marketing Manager,true,");

// Add Personnel Manager.
org.OrgTree("Add","CEO,Personnel Manager,true,");

// Add Marketing Assistant 1 and Marketing Assistant 2.
org.OrgTree("Add","Marketing Manager,Marketing Assistant 1,true,");
org.OrgTree("Add","Marketing Assistant 1, Marketing Assistant 2,true,");

// Define the style of connectors in the chart. You can use Arrow, Ray, or Line.
org.OrgTree("LineStyle","Ray");

// Define the style of boxes in the chart. You can use Square or Round.
org.OrgTree("BoxStyle","Round");

// Optionally, define the overall chart height. To use the default height, omit this
line.
// org.OrgTree("FullBoxHeight","150");

// Optionally, define the overall chart width. To use the default width, omit this line.
// org.OrgTree("FullBoxWidth","250");

// Optionally, define the height of each box in the chart. To use the default height,
omit this line.
// org.OrgTree("BoxHeight","50");

// Optionally, define the width of each box in the chart. To use the default width, omit
this line.
// org.OrgTree("BoxWidth","100");

// Specify if you want to use animation to display the chart.
// org.OrgTree("Animation","True");

// Specify if you want to display chart legend.
org.OrgTree("ShowLegend","False");

Sage CRM 2023 R2 - Developer Guide Page 149 of 403

// Show your chart on the screen.
CRM.AddContent(org.Execute());
Response.Write(CRM.GetPage());

%>
</body>
</html>

2. Save the ASP file in the CustomPages folder in the Sage CRM installation directory.
The default location of the CustomPages folder is %ProgramFiles
(x86)%\Sage\CRM\CRM\WWWRoot\CustomPages.

3. Create a new tab and link it to your ASP file:

a. Log on to Sage CRM as a system administrator.

b. Go to <My Profile> | Administration | Customization.

c. Click Company, and then click Tabs.

d. In the Tab Group Name column, click Company.
e. Under Properties, use the following options:

l Caption. Enter the new tab name.

l Action. Select customfile.

l Custom File. Enter the name of the custom ASP file you created in step 1 of
this procedure.

4. Click Update, and then click Save.

You can view the created organization chart on the new tab you created for each Company record.

Sage CRM 2023 R2 - Developer Guide Page 150 of 403

APIs

l Using Web Services API

l Using SData API

l Using .NET API

Sage CRM 2023 R2 - Developer Guide Page 151 of 403

Using Web Services API
l About Web Services

l Prerequisites for using Web Services

l Enabling Web Services for a user

l Configuring Web Services

l Required fields in quotes and orders

l Using the WSDL file

l Web Services methods

l Web Services objects

l Web Services selection fields

l Sample SOAP requests and XML

l C# code samples

About Web Services
Sage CRM Web Services API (Application Programming Interface) enables developers to manipulate
records in Sage CRM with SOAP (Simple Object Access Protocol) over HTTP using XML (Extensible
Markup Language).

Developers can use the Sage CRM Web Services API to do the following:

l Programmatically create, read, update, and delete entity records in the Sage CRM database.
For example, Companies, People, Opportunities, Cases, Quotes, and Orders.

l Integrate third-party applications used within your organization with Sage CRM.

Sage CRM Web Services provide a standardized method for integrating web-based applications
using the following components via an Internet protocol backbone:

l XML. Tags the data.

l SOAP. Transfers the data. For detailed information about SOAP, go to
http://www.w3.org/TR/SOAP.

l WSDL. Describes the available services.

Web Services allow organizations to exchange data without in-depth knowledge of the IT systems
behind the firewall. Web Services don't provide users with a GUI, which is the case with traditional

Sage CRM 2023 R2 - Developer Guide Page 152 of 403

http://www.w3.org/TR/SOAP

client/server models. Instead, Web Services share business logic, data, and processes through a
programmatic interface across a network. Developers can add the Web Services to a GUI, such as a
web page or an executable program, to provide users with the required functionality. The
technology makes it possible for applications from different sources to communicate with each
other without time-consuming custom coding. All communication is in XML, so you aren't limited
to any one programming language.

To use the Sage CRM Web Services, complete the following steps:

1. Enable and configure Web Services. For more information, see:

l Prerequisites for using Web Services

l Enabling Web Services for a user
l Configuring Web Services

2. View the WSDL file and prepare and submit your request to Web Services.
For more information, see Using the WSDL file.

3. Receive and process the response from Web Services.

The SOAP Web Services API is only available in certain editions of Sage CRM. For more information,
see the Sage CRM Editions Comparison Guide.

Prerequisites for using Web Services
To use Sage CRM Web Services, you must have the following installed on the Sage CRM server:

l A valid Sage CRM license key

l MSXML 4 Service Pack 2
You can download this package at http://www.microsoft.com/en-
us/download/details.aspx?id=19662

Sage CRM Web Services support all development environments that are compatible with SOAP 1.1.
These environments include:

l Microsoft Visual Studio 2012 or later (C#, J#, VB.NET)

l Microsoft Visual C# 2010 Express Edition

Enabling Web Services for a user
To use the Sage CRM Web Services under a particular user account, you need to enable Web
Services for that user account in Sage CRM.

Before enabling Web Services for a user, consider the following:

Sage CRM 2023 R2 - Developer Guide Page 153 of 403

http://www.microsoft.com/en-us/download/details.aspx?id=19662
http://www.microsoft.com/en-us/download/details.aspx?id=19662

l Only one Web Services user can be logged on to Sage CRM at any given time. If a user tries
to log on as another application, the user is prompted to log out first. However, it's
possible to log on to the desktop or from a device with the same ID while a Web Service
application is running.

l Web Services cannot work with Sage CRM fields to which the user account does not have
access. For more information about using field security, see the System Administrator Help.

To enable Web Services for a user:

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Users | Users.

3. Find and select the user account for which you want to enable Web Services.

4. Click Change .

5. Under Allow Web Service Access, select True.

6. Click Save.

Configuring Web Services
To configure Sage CRM Web Services, do the following:

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | System | Web Services.

3. Click Change and then specify the Web Services configuration options described below.

Option Description

Maximum
number of
records to
return

Specifies the maximum number of records that Web Services return in a batch
in response to a query. When this option is set to 0, all records matching the
query are returned in a single batch.

This option is used in conjunction with the query and queryrecord methods.
When a batch is returned, you're prompted to call the next batch, until all
records matching the query are returned.

Maximum size
of request

Specifies the maximum size of request (in characters) that can be sent to Web
Services.

Make WSDL
available to all

Specifies whether the Sage CRM Web Services WSDL file is accessible.

Possible values:

l Yes. Anyone can access the WSDL file.

Sage CRM 2023 R2 - Developer Guide Page 154 of 403

Option Description

l No. Users and system administrators cannot access the WSDL file

When configuring and testing Web Services, we recommend that you set this
option to Yes. When you're done, set this option to No for better security.

To view the WSDL file, in your web browser, enter the URL in the following
format:
http://<ComputerName>/<InstallName>/eware.dll/webservices/webservice.wsdl.

Enable Web
Services

Specifies whether Web Services are enabled in Sage CRM.

Possible values:

l Yes(recommended). Enables Web Services.

l No. Disables Web Services.

To enable or disable Web Services for an individual entity, log on to Sage CRM
as a system administrator, go to <My Profile> | Administration
| Customization | <Entity> | External Access, and then use the Allow Web
Service Access option.

Dropdown
fields as
strings in
WSDL file

Specifies whether to display selection fields and their enumeration values in
the WSDL file.

Possible values:

l Yes (recommended). Hides selection fields and their enumeration values
in the WSDL file.

l No. Displays selection fields and their enumeration values in the
WSDL file.

When this option is set to No, a selection field (comm_status in this case)
displayed in the WSDL file looks similar to the following:

<simpleType name="comm_status">
<restriction base="xsd:string">
<enumeration value="Cancelled"/>
<enumeration value="Complete"/>
<enumeration value="Pending"/>
<enumeration value="In Progress"/>
</restriction>
</simpleType>

When this option is set to Yes, information about selection fields is excluded
from the WSDL file.

Sage CRM 2023 R2 - Developer Guide Page 155 of 403

Option Description

Note: Enumerated values are returned in the default system language.

Send and
return all
dates and
times in
universal time

Specifies the format in which Sage CRM Web Services send and receive times
and dates.

Possible values:

l Yes. Specifies to use Coordinated Universal Time (UTC).

l No. Specifies to use the format set on the Sage CRM server.

This option is important when migrating users from different time zones.

Accept web
request from
IP address

Specifies the unique IP address from which Web Services accept requests. You
can only specify one IP address in this option.

Leave this option blank to allow requests from all IP addresses.

Force web
service logon

Specifies how to handle the client's attempt to log back on to Web Services
when the connection is unexpectedly interrupted.

Possible values:

l Yes (recommended). Specifies that a new instance of the client is
allowed to log on to Web Services following an interrupted connection.
This automatically logs out the old instance of the client.

l No. Specifies that a new instance of the client is blocked from
logging on to Web Services. The old instance of the client remains
logged on.

Required fields in quotes and orders
This topic lists the fields that must be populated when inserting or updating data in quotes and
orders.

Sage CRM 2023 R2 - Developer Guide Page 156 of 403

Line item type Fields required for
insert operations

Fields required for
update operations

Simple l orderquoteid

l opportunityid

l lineitemtype
Can take one of these
values:

l i. Simple.

l f. Free text.

l c. Comment.
l productid

l uomid

l quantity

l quotedprice

l quantity

l quotedprice

l uomid

Free text l orderquoteid

l opportunityid

l lineitemtype
Can take one of these
values:

l i. Simple.

l f. Free text.

l c. Comment.
l description

l quantity

l quotedprice

l description

l quantity

Comment l orderquoteid

l opportunityid

l lineitemtype
Can take one of these
values:

l i. Simple.

l f. Free text.

l c. Comment.
l description

l description

Sage CRM 2023 R2 - Developer Guide Page 157 of 403

The following fields cannot be updated by the user:

l linetype

l orderquoteid

The following fields are populated automatically by Sage CRM and cannot be changed by the user:

l quotedpricetotal

l listprice

l discount

l discountsum

Using the WSDL file
Sage CRM provides a Web Services description language file called a WSDL file. The WSDL file
describes the APIs that Sage CRM exposes, and the XML types that the APIs expect. The file also
describes the server and location of specific services. When the client has read and parsed the
WSDL file, it can call the APIs in the same way as any typical function call. Since data is passed
and returned as XML, it can be easily interpreted and manipulated by the client.

To access the WSDL file, in your web browser, enter the URL in the following format:

http://<ComputerName>/<InstallName>/eware.dll/webservices/webservice.wsdl

where

l <ComputerName>. Is the name of the Sage CRM server.

l <InstallName>. Is the name of the Sage CRM installation folder.

If you're using Microsoft Visual Studio to create a client application, your Visual Studio project
should contain a web reference to the WSDL file. When you add the reference in Visual Studio, the
main pane lists the methods available from the Web Services.

If you name the service CRMWebServices, a new folder called CRMWebServices is added to your
project, which contains the files webservice.discomap and webservice.wsdl. The Web Service proxy
is created automatically. This is a C# version of the WSDL file that handles the dispatch of data in
SOAP format to the Web Service.

Web Services methods
Methods are actions invoked from the client computer, such as adding, updating, or deleting
information on the Sage CRM server. Web Services methods send synchronous requests that are

Sage CRM 2023 R2 - Developer Guide Page 158 of 403

committed automatically. Once committed, Sage CRM Web Services handle the request and returns
a response. The client application handles the response accordingly.

All inserts should typically be performed on an entity basis. However, to facilitate integration, you
can update a company or person with address, phone, and email information. In many systems, a
single contact record represents company, person, phone, email, and address information.

The following is a list of Web Services methods defined in the WSDL file:

Method Description

logon Logs the client on to the server and starts a session.

logoff Logs off the client from the server and terminates the session.

query Executes a query on a specified object based on a where clause, and
returns a record or record set that satisfies the query.

Returns results in batches. You specify batch size in the Maximum
number of records to return option. For more information, see
Configuring Web Services.

Each batch is accompanied by a flag called More. If More is True, there
are more records waiting on the server for that query. Call Next to get
the next batch of data. If anything other than Next is called, the query is
closed.

next Returns the next batch of records matching a query.

Each batch is accompanied by a flag called More. While More is True,
you can continue to call Next until all batches have been returned, and
More is False.

queryentity Returns a record if you supply an object and its ID.

Example:

queryentity(company, 42)

queryid Returns an object of type aisid.

For more information, see Abstract objects.

If you query the database with a where clause, a date, IDs, and flags
denoting whether the record was created, updated, or deleted since that
date, are returned. This is useful for data synchronization.

queryidnodate Returns an object of type aisid. For more information, see Abstract
objects.

Sage CRM 2023 R2 - Developer Guide Page 159 of 403

Method Description

To return specific objects, use a where clause.

getmetadata Returns a list of Sage CRM field types to provide metadata about the
requested table.

getdropdownvalues Returns a list of drop-down fields for a specified table, and the values
that Sage CRM expects for each field.

add Adds records or lists of records to a specified object.

Example:

add("company", NewCompany1, New Company2, New Company3)

addresource Adds a user as a resource. This user is not a fully enabled user. This
method facilitates data migration.

update Updates records or lists of records for a specified object.

altercolumnwidth Resizes a column width to ensure compatibility with third-party
databases, for example, ACT!.

delete Deletes records or lists of records for a specified object.

This method cannot delete records from the following tables, because
they contain historical data:

l newproduct

l uomfamily

l productfamily

l pricing

l pricinglist

addrecord Adds records or lists of records to a specified object.

This method has a different signature than the add method and uses the
lists of fields in the crmrecord type.

queryrecord Executes a query on a specified object based on a where clause, and
returns a record or record set that satisfies the query.

This method has a different signature than the query method and uses
the lists of fields in the crmrecord type.

nextqueryrecord Returns the next batch of records matching a queryrecord. Each batch

Sage CRM 2023 R2 - Developer Guide Page 160 of 403

Method Description

is accompanied by a flag called More. While More is True, you can
continue to call Next until all batches are returned. More is then False.

updaterecord Updates records or lists of records for a specified object.

This method has a different signature than the update method and uses
the lists of fields in the crmrecord type.

getallmetadata Returns a list of fields associated with all tables and some type
information.

getversionstring Returns the Sage CRM version number.

Web Services objects
Web Services objects are programmatic representations of main entities (such as companies and
people), secondary entities (such as addresses and products), and any custom entities that you add.
Because the WSDL is generated dynamically, any customizations made to the system are picked up
each time the WSDL is refreshed at the client side.

Data is manipulated when the Web Services API interacts with object properties, which represent
fields in the entities.

l Abstract objects

l Standard objects

Abstract objects

Object Description

ewarebase
abstract

An abstract declaration from which all other Sage CRM objects inherit.

idbase
abstract

An abstract declaration from which all ID types inherit.

ewarebase
list

A list of the abstract objects above.

crmrecord
type

An enumeration that represents the types of a Sage CRM field (string, datetime,
integer, or decimal).

Use the crmrecordtype object with its associated add, update, and delete functions

Sage CRM 2023 R2 - Developer Guide Page 161 of 403

Object Description

to query an entity and return a list of fields that you can iterate through.

It allows you to specify which fields you want returned in your query, and to
dynamically add fields to the Web Services entities. It removes the need for
strongly typed objects in client applications. Follow code samples closely when
performing these tasks.

Example

Private static void CallQueryRecordOnCompanyEntity()
{
 String companyid = ReadUserInput("Please enter a company name: ");
 Queryrecordresult aresult = Binding.queryrecord("comp_
companyid,address","comp_name='compo1'","company","comp_companyid");
}

This example specifies a field list and an entity name, a Where clause and an order
by. If you enter an asterisk (*) or leave the field list blank, all the fields are
returned.

crmrecord Contains an entity name and a list of objects of type recordfield that represent
one record in the Sage CRM database.

aisid Contains the ID of the record, the created and updated date, and a flag to indicate
whether the record was added, updated, or deleted since the token was passed to
queryid.

multiselec
tfield

Represents a multi-select field from CRM. It contains a field name and an array of
strings representing the values of the field in CRM. These values are translations.

recordfiel
d

Represents a field in a database record. It has a name value and a type of
crmrecordtype. It can also represent a nested structure. For example, the name of
the recordfield in a company crmrecord could be person. The type would be
crmrecord and the record property would contain a list of crmrecords – one for
each person in the company.

Standard objects

Object Description

company Represents the Company entity in Sage CRM.

person Represents the Person entity in Sage CRM.

lead Represents the Lead entity in Sage CRM.

Sage CRM 2023 R2 - Developer Guide Page 162 of 403

Object Description

communication Represents the Communication entity in Sage CRM.

opportunity Represents the Opportunity entity in Sage CRM.

cases Represents the Cases entity in Sage CRM.

users Represents the Users entity in Sage CRM.

quotes Represents the Quotes entity in Sage CRM.

orders Represents the Orders entity in Sage CRM.

quoteitem Represents the QuoteItems entity in Sage CRM.

orderitem Represents the Order Items entity in Sage CRM.

opportunityitem Represents the Opportunity Item entity in Sage CRM.

currency Represents the Currency entity in Sage CRM.

address Represents the Address entity in Sage CRM.

phone Represents the Phone entity in Sage CRM.

email Represents the Email entity in Sage CRM.

newproduct Represents the New Product entity in Sage CRM.

uom Represents the Units of Measure entity in Sage CRM.

uomfamily Represents the UOM Family entity in Sage CRM.

pricing Represents the Pricing entity in Sage CRM.

pricinglist Represents the Pricing List entity in Sage CRM.

productfamily Represents the Product Families entity in Sage CRM.

Web Services selection fields
This topic lists the selection (or drop-down) fields that Web Services support for Sage CRM entities.

Sage CRM 2023 R2 - Developer Guide Page 163 of 403

Entity Selection fields

Company l comp_employees

l comp_indcode

l comp_mailrestriction

l comp_revenue

l comp_sector

l comp_source

l comp_status

l comp_territory

l comp_type

Person l pers_gender

l pers_salutation

l pers_source

l pers_status

l pers_territory

l pers_titlecode

Lead l lead_decisiontimeframe

l lead_priority

l lead_rating

l lead_source

l lead_stage

l lead_status

Communication l comm_action

l comm_hasattachments

l comm_notifydelta

l comm_outcome

l comm_priority

l comm_status

l comm_type

Opportunity l oppo_priority

l oppo_product

Sage CRM 2023 R2 - Developer Guide Page 164 of 403

Entity Selection fields

l oppo_scenario

l oppo_source

l oppo_stage

l oppo_status

l oppo_type

Case l case_foundver

l case_problemtype

l case_productarea

l case_solutiontype

l case_source

l case_stage

l case_status

l case_targetver

Address l addr_country

l prod_uomcategory

Product l addr_country

l prod_uomcategory

By default, the WSDL file displays selection fields and their possible values. To hide selection
fields in the WSDL file, use the Dropdown fields as strings in WSDL file option in the Web
Services configuration settings. For more information , see Configuring Web Services.

Getting possible values of a selection field

Use the getdropdownvalues C# method to get the list of possible values for a selection field in
Sage CRM. The following example populates a ComboBox with selection values from a given field.

private void LoadDropDowns(string entity, string fieldname, ComboBox controlname, WebService WS)
{
 dropdownvalues[] DropDowns;
 DropDowns = WS.getdropdownvalues(entity);
 controlname.Items.Clear();

for (int i = 0; i < DropDowns.Length; i++)
{
if (DropDowns[i].fieldname == fieldname)
{

for (int x = 0; x < DropDowns[i].records.Length; x++)

Sage CRM 2023 R2 - Developer Guide Page 165 of 403

{
 controlname.Items.Add(DropDowns[i].records[x].ToString());
 }
 }
 }
 controlname.SelectedIndex = 0;
}

The next example displays the comp_sector selection field values in a comboSector combo-box,
where the web service object is named oWebService.

LoadDropDowns("company", "sector", comboSector, oWebService);

Sample SOAP requests and XML
l Logon request

l Authentication response

l Logoff request

l Delete request

l Update request

l Query request

l XML representing a company

Logon request

This C# example logs on to Sage CRM.

// An Instance of the web service.
private static WebService binding = null;
// Persistent for the duration of the program, maintain the logon results
private static logonresult SID = null;
private static void LogonToCRMSystem()
{

try
{

 HttpWebRequest request = (HttpWebRequest) WebRequest.Create
("http://cloud.sagecrm.com/myCustomerID/eware.dll/webservices/CRMwebservice.wsdl");
 HttpWebResponse response = (HttpWebResponse) request.GetResponse(); binding = new WebService
();
 SID = binding.logon("admin", ""); binding.SessionHeaderValue = new SessionHeader();

//Persistent SID
 binding.SessionHeaderValue.sessionId = SID.sessionid;

return true;
 }

Sage CRM 2023 R2 - Developer Guide Page 166 of 403

catch (SoapException e)
{
Write(e.Message);

 }
catch (Exception e)
{
Write(e.Message + "\n" + e.StackTrace);

 }
}

This is the XML request that Web Services process.

<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body>
<logon xmlns="http://tempuri.org/type">

<username>admin</username>
<password />

</logon>
</soap:Body>

</soap:Envelope>

Authentication response

The following is a sample authentication response indicating that authentication against the
endpoint was a success. The response format is JSON.

{
"installName": "<myCustomerID>",
"wsdlUrl":

"https://cloud.na.sagecrm.com/<CustomerID>/eware.dll/webservices/CRMwebservice.wsdl",
"wsUrlConnection": "https://cloud.na.sagecrm.com/<CustomerID>/eware.dll/webservices/",
"web2LeadUrl": "https://cloud.na.sagecrm.com/<CustomerID>/eware.dll/SubmitLead",
"sDataUrl": "https://cloud.na.sagecrm.com/sdata/<CustomerID>j/sagecrm/",
"edition": "professional",
"domain": "cloud.na.sagecrm.com",
"userId": 1,
"teamId": 1,
"found": true,
"userAuthenticated": true,
"userWebServicesEnabled": true,
"userDisabled": false

}

Sage CRM 2023 R2 - Developer Guide Page 167 of 403

Logoff request

This C# example logs off from Sage CRM.

//Log off
if (binding.logoff(binding.SessionHeaderValue.sessionId).success)
{

Write("Logged off");
}

This XML example logs off from Sage CRM.

<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Header>
<SessionHeader xmlns="http://tempuri.org/type">

<sessionId>57240080053832</sessionId>
</SessionHeader>

</soap:Header>
<soap:Body>
<logoff xmlns="http://tempuri.org/type">

<sessionId>57240080053832</sessionId>
</logoff>

</soap:Body>
</soap:Envelope>

Delete request

This C# example deletes a company whose ID is 1.

ewarebase[] idList = new ewarebase[1];
crmid aCompanyId = new crmid();
aCompanyId.crmid1 = 1; //1 is id of company to delete
idList[0] = aCompanyId;
deleteresult aResult = binding.delete("company", idList);
if (aResult.deletesuccess == true)
{

Write("Number deleted successfully : " + aResult.numberdeleted);
}

This is the XML request that Web Services process.

Sage CRM 2023 R2 - Developer Guide Page 168 of 403

<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Header>
<SessionHeader xmlns="http://tempuri.org/type">

<sessionId>127169567253830</sessionId>
</SessionHeader>

</soap:Header>
<soap:Body>
<delete xmlns="http://tempuri.org/type">

<entityname>company</entityname>
<records xsi:type="companyid">
<companyid>66</companyid>

</records>
</delete>

</soap:Body>
</soap:Envelope>

Update request

This C# example changes the name of the company whose ID is 66.

private static void UpdateACompany()
{
 String idString = "66";
 String newName = "newName";

//can update a number of companies
 ewarebase[] companyList = new ewarebase[1];
 company aCompany = new company();
 aCompany.companyid = Convert.ToInt16(idString);
 aCompany.companyidSpecified = true;
 aCompany.name = newName;
 companyList[0] = aCompany;
 updateresult aresult = binding.update("company", companyList);

if (aresult.updatesuccess == true)
{ }
else
{ }

}

This is the XML request that Web Services process.

<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Header>
<SessionHeader xmlns="http://tempuri.org/type">

<sessionId>12663708753831</sessionId>
</SessionHeader>

Sage CRM 2023 R2 - Developer Guide Page 169 of 403

</soap:Header>
<soap:Body>
<update xmlns="http://tempuri.org/type">

<entityname>company</entityname>
<records xsi:type="company">
<people xsi:nil="true" />
<address xsi:nil="true" />
<email xsi:nil="true" />
<phone xsi:nil="true" />
<companyid>933</companyid>
<name>Design Wrong Inc</name>

</records>
</update>

</soap:Body>
</soap:Envelope>

Query request

This example queries a company record whose ID is 66.

company aCompany = (company) binding.queryentity(66, "company").records;

XML representing a company

This XML represents a company whose ID is 65.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SOAP-ENV:Body>
<queryentityresponse xmlns="http://tempuri.org/type">

<result>
<records xsi:type="typens:company" mlns:typens="http://tempuri.org/type">

<typens:companyid>65</typens:companyid>
<typens:primarypersonid>79</typens:primarypersonid>
<typens:primaryaddressid>77</typens:primaryaddressid>
<typens:primaryuserid>9</typens:primaryuserid>
<typens:name>AFN Interactive
</typens:name>
<typens:website>http://www.AFNInteractive.co.uk</typens:website>
<typens:createdby>1</typens:createdby>
<typens:createddate>2004-08-30T18:10:00</typens:createddate>
<typens:updatedby>1</typens:updatedby>
<typens:updateddate>2004-08-30T18:10:00</typens:updateddate>
<typens:timestamp>2004-08-30T18:10:00</typens:timestamp>
<typens:librarydir>A\AFN Interactive(65)</typens:librarydir>
<typens:secterr>-1845493753</typens:secterr>
<email>
<entityname>email</entityname>

Sage CRM 2023 R2 - Developer Guide Page 170 of 403

<records xsi:type="typens:email"
 xmlns:typens="http://tempuri.org/type">

<typens:emailid>120</typens:emailid>
<typens:companyid>65</typens:companyid>
<typens:type>Sales</typens:type>
<typens:emailaddress>sales@AFNInteractive.co.uk</typens:emailaddress>
<typens:createdby>1</typens:createdby>
<typens:createddate>2004-08-30T18:10:00</typens:createddate>
<typens:updatedby>1</typens:updatedby>
<typens:updateddate>2004-08-30T18:10:00</typens:updateddate>
<typens:timestamp>2004-08-30T18:10:00</typens:timestamp>

</records>
</email>
<phone>
<entityname>phone</entityname>
<records xsi:type="typens:phone"

 xmlns:typens="http://tempuri.org/type">
<typens:phoneid>211</typens:phoneid>
<typens:companyid>65</typens:companyid>
<typens:type>Business</typens:type>
<typens:countrycode>44</typens:countrycode>
<typens:areacode>208</typens:areacode>
<typens:number>848 1051</typens:number>
<typens:createdby>1</typens:createdby>
<typens:createddate>2004-08-30T18:10:00</typens:createddate>
<typens:updatedby>1</typens:updatedby>
<typens:updateddate>2004-08-30T18:10:00</typens:updateddate>
<typens:timestamp>2004-08-30T18:10:00</typens:timestamp>

</records>
</phone>
<address>
<entityname>address</entityname>
<records xsi:type="typens:address"

 xmlns:typens="http://tempuri.org/type">
<typens:addressid>77</typens:addressid>
<typens:address1>Greenside House</typens:address1>
<typens:address2>50 Station Road</typens:address2>
<typens:address3>Wood Grn</typens:address3>
<typens:city>LONDON</typens:city>
<typens:postcode>N22 7TP</typens:postcode>
<typens:createdby>1</typens:createdby>
<typens:createddate>2004-08-30T18:10:00</typens:createddate>
<typens:updatedby>1</typens:updatedby>
<typens:updateddate>2004-08-30T18:10:00</typens:updateddate>
<typens:timestamp>2004-08-30T18:10:00</typens:timestamp>

</records>
</address>

</records>
</result>

</queryentityresponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

C# code samples
Sage CRM is supplied with a number of Microsoft Visual Studio 2005 C# solutions that contain
code samples you can use when developing Web Services applications for Sage CRM.

Sage CRM 2023 R2 - Developer Guide Page 171 of 403

On a Sage CRM server, you can find these C# solutions in the following location:
<Sage CRM installation folder>\WWWRoot\Examples\WebServices

By default, Sage CRM is installed to %ProgramFiles(x86)%\Sage\CRM\CRM.

In the specified location, you will find the Sage CRM Web Services Sample Code.zip file that
includes the following folders:

l CRM Add Resource. Contains code that adds a resource (user) to Sage CRM through Web
Services. The sample code lets you enter a first name and a last name for the resource. It
creates a record in the User table.

l CRM AlterColumnWidth. Contains code that changes the width of the comp_practicefield
column in the Company table.

l CRM Create. Contains code that creates company, person, address, and phone records in
Sage CRM.

l CRM Delete. Contains code that deletes a specified company from Sage CRM.

l CRM LogOn and LogOff. Contains code that logs on and logs off from Sage CRM. At logon,
this code returns and displays a session ID.

l CRM MetaData. Contains code that gets information about Sage CRM tables. The user can
select from five entities: Company, Person, Case, Opportunity, or Communication. When the
user clicks MetaData, all table columns are displayed in the left-hand pane. The user can
highlight any column to display information about the column. When the user clicks
AllMetaData, the main Sage CRM tables are listed in a drop-down. The user can select a
table to view all associated columns.

l CRM QueryEntity. Contains code that queries the Company table. The user enters a known
company ID and clicks Search to display all people associated with the specified company.

l CRM QueryIdNoDate. Contains code that allows the user to enter a date. The user clicks
Query N/D to display a list of company IDs where the update date is greater than or equal
to the date entered.

l CRM SelectionLists. Contains code that works with selection lists. The user can select
from seven tables: Company, Person, Opportunity, Case, Communication, Solution, or
Library. When the user clicks List, the Lists drop-down list is populated with the selection
fields in the table. When the user chooses a selection field and clicks Lists Items, the left-
hand pane is populated with values from the selection field.

l CRM SID Grabber. Contains code that displays the current session ID and Sage
CRM version number. At least one user must be logged on to Sage CRM.

l CRM SID_Key. Contains code that displays the current session ID on the form. At least one
user must be logged on to Sage CRM.

l CRM Update. Contains code that updates the Source and Website fields in Sage CRM.

l CRM Version. Contains code that displays the current session ID on the form and Sage
CRM version number in a pop-up box.

Sage CRM 2023 R2 - Developer Guide Page 172 of 403

To run sample code, enter your Sage CRM user name and password, and click Log On. When you're
finished working with code samples, click Log Off. Make sure that you specify the correct
reference to the WSDL file. For more information, see Using the WSDL file.

Using SData API
l About SData

l Prerequisites for using SData

l SData authentication

l Managing SData access

l HTTP request URL

l SData endpoints

About SData
SData is a standard that can be used to read, write, update, and delete data between applications.
It also provides more complex functions such as synchronization of data, security, discoverability
of services, single sign-on, error handling, and paging and batching of information for increased
performance. SData enables desktop, server, and web-based Sage applications to communicate with
each other, third-party applications, and the web.

In Sage CRM, SData can only be used to read data by using the ATOM feed technology. SData is
built on top of common industry standards including HTTP, XML, REST, and Atom/RSS. Any Sage
CRM user can use SData. It doesn’t use up a user license so a user can be logged into Sage CRM
and access data through a third-party, external application.

Each entity, custom table, and user view in Sage CRM can be exposed for read-only SData access.
An XSD schema definition is available to provide information about which entities are exposed.

An SData request triggers an XML-based response. The response can include a single record or a
collection of records. If the response size for an SData request exceeds 100 records, it defaults to
100 records. If a user tries to access SData from an external system and defines a page count of
200 records in the URL, the payload returns the records in blocks of 100 records per page. The
same applies if a user defines a URL with no pagination.

For more information about SData, please refer to the following:

l Sage CRM User Help posted on the Sage CRM Help Center.

l SData Specification posted at http://sage.github.io/SData-2.0.

Sage CRM 2023 R2 - Developer Guide Page 173 of 403

http://help.sagecrm.com/
http://sage.github.io/SData-2.0/
http://sage.github.io/SData-2.0/

Prerequisites for using SData
To use SData, you must have the following installed on the Sage CRM server:

l A valid Sage CRM license key

l Apache Tomcat (installed as part of Sage CRM)

Apache Tomcat is a servlet container developed by the Apache Software Foundation (ASF). Tomcat
implements the Java Servlet and JavaServer Pages (JSP) specifications from Sun Microsystems, and
provides a pure Java HTTP web server environment for Java code to run. Every request issued for
the SData Provider is redirected to the Tomcat Server.

If you're working with Sage CRM and encounter a problem that requires a web server reset, you
might need to reset both Microsoft Web Server (IIS) and Apache Tomcat. For more information, see
the System Administrator Guide or Help.

SData authentication
All SData requests must include authentication data (user name and password) in their headers.
SData access is subject to the same territory model as Sage CRM users. Profile security (CRUD

Sage CRM 2023 R2 - Developer Guide Page 174 of 403

rights per entity) and access rights depend on the user type, for example, administrator or non-
administrator.

Make sure that you use Base64 encoding to encrypt the user name and password supplied in the
HTTP request header with X-Sage-Authorization line included, as shown below:

request.Headers.Add("X-Sage-Authorization", "Basic "+ Convert.ToBase64String
(Encoding.ASCII.GetBytes(this.userName + ":" + this.password)));

For better security, we recommend that you send authentication requests via HTTPS.

Note: You can use a session ID to authenticate calls to some SData endpoints. For details,
seeAuthentication: retrieve session ID for a user.

Managing SData access
In the Sage CRM user interface, you can enable or disable read-only SData access to the following:

l Entities

l Custom tables

l User views of entities

Entities

Changing SData settings for an entity doesn't affect SData settings specified for the user views of
the entity. You can also enable or disable read-only SData access when creating a new custom
entity by using the Advanced Customization Wizard. For more information, see the System
Administrator Help.

To enable or disable read-only SData access to an entity:

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Customization | <Entity> | External Access,
where <Entity> is the entity for which you want to enable or disable read-only SData access.

3. Click Change.

4. Under Read-only SData, select one of the following:

l Yes. Enables read-only SData access to the entity.

l No. Disables read-only SData access to the entity.

5. Click Save.

Sage CRM 2023 R2 - Developer Guide Page 175 of 403

Custom tables

To enable or disable read-only SData when creating a new custom table:

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Advanced Customization | Tables and
Databases.

3. Click Create Table.

4. On the page that opens, under Read-only SData, select one of the following:

l Yes. Enables read-only SData access to the table being created.

l No. Disables read-only SData access to the table being created.

5. Fill in other fields as required.

6. Click Save to create new table.

User views of entities

To enable or disable read-only SData access to the user view of an entity:

1. Log on to Sage CRM as a system administrator.

2. Go to <My Profile> | Administration | Customization | <Entity> | Views.
where <Entity> is the entity for whose user view you want to enable or disable read-only
SData access.

3. In the View Name column, click the user view for which you want to enable or disable
SData access.

4. On the page that opens, click Change.

5. Do one of the following:

l To enable SData access, select the SData view check box.

l To disable SData access, clear the SData view check box.

6. Click Save.

Changing SData settings for an entity doesn't affect SData settings specified for the user views of
the entity.

HTTP request URL
To access an entity, custom table, or user view via SData, you need to make an HTTP request in the
format that is specific to your Sage CRM environment. The response is always XML.

Your HTTP request should have the following format:

Sage CRM 2023 R2 - Developer Guide Page 176 of 403

http://<Server>/sdata/<InstallName>j/sagecrm/-/<Target>

Where:

l <Server>. Is the name of the computer on which Sage CRM is installed.

l <InstallName>. Is the name of the Sage CRM install (this is crm by default). Make sure to
append j after the install name as shown in the HTTP request format above.

l <Target>. Is the name of the entity, custom table, or view you want to access.

The following table provides sample HTTP requests and their descriptions.

HTTP request Description

http://SageCrmServer/sdata/crmj/
sagecrm/-/company/$schema

Returns the company schema.

http://SageCrmServer/sdata/crmj/
sagecrm/-/company('43')

Return the record for the company whose ID
(comp_companyid field value) is 43.

http://SageCrmServer/sdata/crmj/
sagecrm/-/company?where=
comp_companyid eq '43'

http://SageCrmServer/sdata/crmj/
sagecrm/-/company(comp_companyid eq
'43')

http://SageCrmServer/sdata/crmj/
sagecrm/-/company?where=comp_name
like 'A%' and comp_type eq 'customer%'

Returns the company records where the
company name begins with A and the company
type is customer.

http://SageCrmServer/sdata/crmj/
sagecrm/-/company?where=comp_companyid
eq '43'&include=person,address,
phoneCollection,emailCollection

Return the record for the company whose ID
(comp_companyid field value) is 43.

The response includes the name, address,
phone, and email of the primary person
associated with the company.

http://CRMserver/sdata/crmj/
sagecrm/-/company?where=comp_companyid
eq '43'&include=Person

http://CRMserver/sdata/crmj/
sagecrm/-/vCompanySummary

Returns all records from the
vCompanySummary user view.

http://CRMserver/sdata/crmj/
sagecrm/-/person?where=concat(pers_
firstname, pers_lastname) eq 'William
Agnew'

Returns the record for a person whose name is
William Agnew.

Sage CRM 2023 R2 - Developer Guide Page 177 of 403

HTTP request Description

http://CRMserver/sdata/crmj/
sagecrm/-/quoteitems?where=quit_
productid ge 3 and quit_productid le 10

Returns quote records for products whose IDs
fall between 3 and 10.

http://CRMserver/sdata/crmj/
sagecrm/-/quoteitems?where=quit_
updateddate ge currenttimestamp()

Returns quote records that were updated on
the current date or earlier.

http://CRMserver/sdata/crmj/
sagecrm/-/company
('43')&SID=61546204736053

Authenticates the user by using session ID
(SID) and returns the record for the company
whose ID (comp_companyid field value) is 43.

In Sage CRM version 7.1 and later, you can use
session ID (SID) in the SData URL as an
alternative authentication mechamism in
SData requests.

You can also use fast SData requests for AJAX in Custom Content and OnChange scripts, for
example:

<script>
function GetKeyValue(querystringname) {

var strPath = window.location.search.substring(1);
var arrayKeys = strPath.split("&");
for (var i = 0; i < arrayKeys.length; i++) {
var arrayValue = arrayKeys[i].split("=");
if (arrayValue[0].toLowerCase() == querystringname.toLowerCase()) {

return arrayValue[1];
 }
 }

return "";
}
window.alert("start:" + GetKeyValue("SID"));
XmlHttp = new XMLHttpRequest();
var strURL = "http://richardsj-lt/sdata/crm71j/sagecrm/-/company?where=comp_companyid in ('43',
'45')&SID=" + GetKeyValue("SID");
XmlHttp.open('GET', strURL, false);
window.alert("open");
XmlHttp.send(null);
window.alert("send");
var strHtml = XmlHttp.responseText;
XmlHttp = null; // always clear the XmlHttp object when you are done to avoid memory leaks
window.alert("test:" + strHtml);
window.alert("end");
</script>

Sage CRM 2023 R2 - Developer Guide Page 178 of 403

SData endpoints
This section provides information about some of the endpoints available via the SData API. To see
how these endpoints work, use the provided Postman collection.

l Postman collection

l Authentication: retrieve session ID for a user

l Search entities using Quick Find

l Retrieve date/time (calendar) preferences for a user

l Retrieve calendar translations for a user

l Retrieve metadata definitions of translations

l Retrieve metadata definitions of a screen or list

l Retrieve favourites for a user

l Retrieve active notifications for a user

l Retrieve notification options for a user

l Upload a file to a folder

l Delete all files uploaded in a session

Postman collection

To see the SData API endpoints in action, you can use Postman, a multiplatform REST client with
intuitive GUI for configuring HTTP requests, designing JSON payloads, and viewing HTTP
responses.

We have prepared a Postman collection demonstrating how to use endpoints exposed through the
SData API.

For steps on how to download and use the Postman collection, go to the Sage CRM RESTful
API documentation, select the RESTful API reference for your Sage CRM version, and see the
Postman collection section.

Prerequisites

You must have Sage CRM with demo data installed. This is required because the Postman
collection uses the default Admin account that is installed with demo data.

Sage CRM 2023 R2 - Developer Guide Page 179 of 403

http://www.postman.com/
https://developer.sage.com/crm/
https://developer.sage.com/crm/

Authentication: retrieve session ID for a user

You can use a session ID (SID) to authenticate your calls to the SData API and perform actions
under the user account to which the SID belongs. To retrieve a session ID, submit your user name
and password to Sage CRM as shown below.

Headers

Key Value

Content-Type application/xml

HTTP

POST http://{{server}}/crm/eware.dll/webservices/soap

URI parameters

Name Description

{{server}} Name or IP address of a Sage CRM server.

Request body

Tag Description

<username></username> Use this tag to submit the user name of
the Sage CRM account whose SID you want
to retrieve.

Example

<username>Admin</username>

<password></password> Use this tag to submit the password of the
Sage CRM account whose SID you want to
retrieve.

Sage CRM 2023 R2 - Developer Guide Page 180 of 403

Sample response

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SOAP-ENV:Body>
<logonresponsetype xmlns="http://tempuri.org/type">

<result>
<sessionid>125407476439516</sessionid>

</result>
</logonresponsetype>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Name Description

<sessionid></sessionid> Contains SID of the user account.

Search entities using Quick Find

Quick Find can search across single-line text, email address, and URL fields of the company,
people, opportunity, lead, communication, order, quote, case, solution, library document, and
custom entity records at once. Optionally, you can narrow your search down to a single entity.

For more information about configuring and using Quick Find, see System Administrator Help and
User Help.

Authentication

Session ID. For details, see Authentication: retrieve session ID for a user.

HTTP

GET http://{{server}}/sdata/
{{install}}j/sagecrm2/$service/quickFind/getResults?query=eurolandia&SID={{sid}}&entity={{entity
name}}

Sage CRM 2023 R2 - Developer Guide Page 181 of 403

URI parameters

Name Description

{{server}} Name or IP address of a Sage CRM server.

{{install}} Sage CRM installation name. By default, this is CRM.

query Key terms to search for.

Example

query=eurolandia company invoice

{{sid}} Session ID of the user account under which to access Quick Find.

entity Optional. The entity you want to search. When you omit this parameter,
Sage CRM searches all supported standard and custom entities at once.

This parameter can take one of the following values:

l Company

l Person

l Opportunity

l Lead

l Communication

l Orders

l Quotes

l Cases

l Solutions

l Library

l Custom entitity name

The parameter values are case sensitive, use them exactly as shown
above. When specifying a custom entity name, enter it exactly as it
appears in the Sage CRM user interface.

Example

entity=Company

{{entity name}} Name of the entity you want to search.

Sage CRM 2023 R2 - Developer Guide Page 182 of 403

Request body

None

Response

A JSON object containing the definitions of records that meet your search criteria.

Retrieve date/time (calendar) preferences for a user

Authentication

Session ID. For details, see Authentication: retrieve session ID for a user.

HTTP

GET http://{{server}}/sdata/{{install}}j/userdata?Action=getCalendarUserPreferences&SID={{sid}}

URI parameters

Name Description

{{server}} Name or IP address of a Sage CRM server.

{{install}} Sage CRM installation name. By default,
this is CRM.

{{sid}} Session ID of the user account whose
calendar preferences to retrieve.

Request body

None

Response

A JSON object containing date/time (calendar) preferences for the specified user.

Sage CRM 2023 R2 - Developer Guide Page 183 of 403

Retrieve calendar translations for a user

Authentication

Session ID. For details, see Authentication: retrieve session ID for a user.

HTTP

GET http://{{server}}/sdata/{{install}}j/userdata?Action=getCalendarTranslations&SID={{sid}}

URI parameters

Name Description

{{server}} Name or IP address of a Sage CRM server.

{{install}} Sage CRM installation name. By default,
this is CRM.

{{sid}} Session ID of the user account whose
calendar translations to retrieve.

Request body

None

Response

A JSON object containing calendar translations in the language of the specified user.

Retrieve metadata definitions of translations

Authentication

Session ID. For details, see Authentication: retrieve session ID for a user.

Sage CRM 2023 R2 - Developer Guide Page 184 of 403

Headers

Key Value

Content-Type application/json

HTTP

POST http://{{server}}/sdata/{{install}}j/metadata/-/$service/getTrans?SID={{sid}}

URI parameters

Name Description

{{server}} Name or IP address of a Sage CRM server.

{{install}} Sage CRM installation name. By default,
this is CRM.

{{sid}} Session ID of the user account under which
to access Sage CRM.

Request body

An array of caption family, caption code, and caption language values.

Name Description

captFamily Name of the caption family to which the
caption belongs.

captCode Code of the caption.

captLanguage Language of the caption. Valid values:

l DE
l ES
l FR
l UK
l US

Sage CRM 2023 R2 - Developer Guide Page 185 of 403

Response

A JSON object containing metadata definitions of translations for the specified language and user
account.

Retrieve metadata definitions of a screen or list

Authentication

Session ID. For details, see Authentication: retrieve session ID for a user.

HTTP

GET http://{{server}}/sdata/{{install}}j/metadata/-/$service/getCustomObject?name=CaseGrid&SID=
{{sid}}

URI parameters

Name Description

{{server}} Name or IP address of a Sage CRM server.

{{install}} Sage CRM installation name. By default,
this is CRM.

name Name of the screen or list whose metadata
definitions to retrieve.

{{sid}} Session ID of the user account under which
to access Sage CRM.

Request body

None

Response

A JSON object containing metadata definitions of each field included in the specified screen or
list.

Sage CRM 2023 R2 - Developer Guide Page 186 of 403

Retrieve favourites for a user

Authentication

Session ID. For details, see Authentication: retrieve session ID for a user.

HTTP

GET http://{{server}}/sdata/{{install}}j/userdata?Action=getFavourites&SID={{sid}}

URI parameters

Name Description

{{server}} Name or IP address of a Sage CRM server.

{{install}} Sage CRM installation name. By default,
this is CRM.

{{sid}} Session ID of the user account whose
favourites to retrieve.

Request body

None

Response

A JSON object containing an array of records added to favourites by the specified user.

Retrieve active notifications for a user

Authentication

Session ID. For details, see Authentication: retrieve session ID for a user.

Sage CRM 2023 R2 - Developer Guide Page 187 of 403

HTTP

GET http://{{server}}/sdata/{{install}}j/userdata?Action=getNotifications&SID={{sid}}

URI parameters

Name Description

{{server}} Name or IP address of a Sage CRM server.

{{install}} Sage CRM installation name. By default,
this is CRM.

{{sid}} Session ID of the user account whose
notifications to retrieve.

Request body

None

Response

A JSON object containing an array of active notifications for the specified user.

Retrieve notification options for a user

Authentication

Session ID. For details, see Authentication: retrieve session ID for a user.

HTTP

GET http://{{server}}/sdata/{{install}}j/userdata?Action=getNotificationOptions&SID={{sid}}

Sage CRM 2023 R2 - Developer Guide Page 188 of 403

URI parameters

Name Description

{{server}} Name or IP address of a Sage CRM server.

{{install}} Sage CRM installation name. By default,
this is CRM.

{{sid}} Session ID of the user account whose
notification options to retrieve.

Request body

None

Response

A JSON object containing an array of notification options for the specified user.

Upload a file to a folder

This endpoint enables you to upload a file to a folder on a Sage CRM server. You can upload only
one file at a time.

Authentication

Session ID. For details, see Authentication: retrieve session ID for a user.

Headers

Key Value

Content-Type multipart/form-data

HTTP

POST http://{{server}}/sdata/{{install}}j/sagecrm/-/$service/fileUpload?SID={{sid}}

Sage CRM 2023 R2 - Developer Guide Page 189 of 403

URI parameters

Name Description

{{server}} The name or IP address of a Sage CRM
server.

{{install}} Sage CRM installation name. By default,
this is CRM.

{{sid}} The session ID of the user account under
which to upload files.

Request body

Key Value

hiddenFileUpload Required. Data of the files to upload.

hiddenUserFolder Optional. The name of a subfolder in
<Sage CRM installation
folder>\Library\ to upload the specified
file to.

Example value of hiddenUserFolder

MyFolder

When you omit this parameter, the file is
uploaded to <Sage CRM installation
folder>\Library\TEMP\<SID>, where
<SID> is the session ID you use to
authenticate your call.

By default, Sage CRM is installed to
%ProgramFiles(x86)%\Sage\CRM\CRM.

Response

An XML object containing information about the uploaded file.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<root>

<message></message>
<file></file>
<status></status>

Sage CRM 2023 R2 - Developer Guide Page 190 of 403

</root>

Name Description

<file></file> Name of the uploaded file.

<status></status> Upload status, such as SUCCESS or
FAILURE.

Delete all files uploaded in a session

This endpoint enables you to delete all files uploaded to the following folder on a Sage CRM
server:

<Sage CRM installation folder>\Library\TEMP\<SID>

Where <SID> is the ID of the session in which the files were uploaded.

Authentication

Session ID. For details, see Authentication: retrieve session ID for a user.

HTTP

DELETE http://{{server}}/sdata/{{install}}j/sagecrm/-/$service/fileDelete?SID={{sid}}

URI parameters

Name Description

{{server}} Name or IP address of a Sage CRM server.

{{install}} Sage CRM installation name. By default,
this is CRM.

{{sid}} ID of the session in which the files to be
deleted were uploaded.

Sage CRM 2023 R2 - Developer Guide Page 191 of 403

Request body

None

Using .NET API
To view the .NET API documentation, go to the Developer Portal.

Sage CRM 2023 R2 - Developer Guide Page 192 of 403

https://developer.sage.com/crm/

Reference

l ASP objects

l Component Manager methods

Sage CRM 2023 R2 - Developer Guide Page 193 of 403

ASP objects
Object Description

AddressList object Provides access to the lists of recipients (To, Cc, and Bcc).

Attachment object Provides access to message attachments.

AttachmentList object Provides access to email attachments.

CRM object Provides access to Sage CRM objects and functionality.

CRMBase object Sets up the context information for the current view and
displays the tabs for that view.

CRMBlock object Is the base for all CRM blocks.

CRMChartGraphicBlock
object

Use this object to draw charts and graphs.

CRMContainerBlock object Use this object to group blocks on a screen.

CRMContentBlock object Is a simple block that takes a text string and displays it on the
page.

CRMEntryBlock object Corresponds to a single field that's displayed or edited
onscreen.

CRMEntryGroupBlock
object

Corresponds to a screen in CRM.

CRMFileBlock object Provides access to external files that are not part of the
system.

CRMGraphicBlock object Use this block to display images through an ASP page.

CRMGridColBlock object Use this object to set the properties of an individual column
within a list.

CRMListBlock object Use this object to create and display lists.

CRMMarqueeBlock object Use this object to add scrolling text to a page.

CRMMessageBlock object Use this object to send messages in SMS and email format.

CRMOrgGraphicBlock Use this object to create organizational charts.

Sage CRM 2023 R2 - Developer Guide Page 194 of 403

Object Description

object

CRMPipelineGraphicBlock
object

Use this object to create cross-sectional diagrams that
represent data from an ASP page or table.

CRMQuery object Use this object to enter and execute SQL statements against a
known system database.

CRMRecord object Represents records in a table.

CRMSelfService object Provides access to the CRM database and to many CRM object
methods, from outside the CRM application.

CRMTargetListField object Use this objects to define fields to be included in a target list.

CRMTargetListFields
object

Use this object to set up a list of CRMTargetListField
objects.

CRMTargetLists object Use this object to create and save a target list in conjunction
with the CRMTargetListField object and
CRMTargetListFields object.

Email object Use this object to customize scripts deployed by E-mail
Management. The Email object provides access to an email
through its properties and methods.

MailAddress object Use this object to customize scripts deployed by E-mail
Management. The MailAddress object provides access to an
individual address from the AddressList object.

MsgHandler object Use this object customize scripts deployed by E-mail
Management. It provides basic access to the Email object and
functionality for the system.

Sage CRM 2023 R2 - Developer Guide Page 195 of 403

AddressList object
Provides access to the lists of recipients (To, Cc, and Bcc). Allows you to customize scripts
deployed by E-mail Management (see the System Administrator Guide or Help).

The AddressList object is returned by the Email object properties (Recipients, CC, and BCC).

l AddressList methods

l AddressList properties

AddressList methods

AddAddress(Address, Name). Adds an address to the list of recipients in an email.

AddAddress(Address, Name)

Adds an address to the list of recipients in an email.

Parameters

l Address. Specifies an email address to add.

l Name. Specifies the recipient name associated with the email address.

Examples

email.Recipients.AddAddress("john.doe@mydomain.com", "John Doe");

Adds the email address of John Doe to the To list.

AddressList properties

l Items. Returns email addresses and names in the form of a MailAddress object.

l Count. Returns the number of email addresses in the list.

Items

Returns email addresses and recipient names in the form of a MailAddress object.

Parameters

Integer. Specifies the index position of the email address to return.

Sage CRM 2023 R2 - Developer Guide Page 196 of 403

Property value

Addresses and recipient names in the form of a MailAddress object.

Examples

var emailAddress;
emailAddress = email.Recipients.Items(1).Address;1

Returns the email address located at index position 1 in the To list and stores the address in the
emailAddress variable.

Count

Returns the number of email addresses in the list.

Property value

Integer

Examples

if (email.Recipients.Count==1)
{

// Insert code to perform action here.
}

Specifies to perform some action if the number of email addresses in the To list equals 1.

Sage CRM 2023 R2 - Developer Guide Page 197 of 403

Attachment object
Provides access to message attachments. Allows you to customize scripts deployed by E-mail
Management (see the System Administrator Guide or Help).

The Attachment object is returned by the Attachments property of the Email object properties.
Use the Items property of the AttachmentList object to access the Attachment object.

l Attachment methods

l Attachment properties

Attachment methods

l Save(Name, Path). Saves the attachment to a specified folder.

l SaveAs(Name, Path). Saves the attachment as a file with the specified name.

Save(Name, Path)

Saves the attachment to a specified folder.

Parameters

l Name. Specifies the name of the file in which to save the attachment. The parameter is
passed by reference and may be returned with a different value than the value sent to it.

l Path. Specifies the full path to the folder in which to save the attachment.

Return value

Boolean:

l True. Indicates that the save operation succeeded.

l False. Indicates that the save operation failed.

Examples

AttItem.Save("MyAttachment.txt", "C:\Attachments");

Saves the attachment stored in the AttItem variable to the MyAttachment.txt file located in the
Attachments folder.

Sage CRM 2023 R2 - Developer Guide Page 198 of 403

SaveAs(Name, Path)

Saves the attachment as a file with the specified name.

Parameters

l Name. Specifies the name of the file in which to save the attachment.

l Path. Specifies the full path to the location of the file.

Return value

Boolean:

l True. Indicates that the save operation succeeded.

l False. Indicates that the save operation failed.

Examples

AttItem.SaveAs("MyAttachment.txt", "C:\Attachments");

Saves the attachment stored in the AttItem variable to the MyAttachment.txt file located in the
Attachments folder.

Attachment properties

l Name. Gets or sets the file name of the attachment.

l Extension. Gets the file name extension of the attachment.

Name

Gets or sets the file name of the attachment.

Property value

String (read/write)

Examples

var newname;
newname = AttItem.Name + "MyAttachment" + AttItem.Extension;

Sage CRM 2023 R2 - Developer Guide Page 199 of 403

Adds the string MyAttachment as a suffix to the original file name of the attachment stored in the
AttItem variable. Keeps the file name extension of the attachment. Stores the new file name of the
attachment in the newname variable.

Extension

Gets the file name extension of the attachment.

Property value

String (read-only)

Examples

var newname;
newname = AttItem.Name + "MyAttachment" + AttItem.Extension;

Adds the string MyAttachment as a suffix to the original file name of the attachment stored in the
AttItem variable. Keeps the file name extension of the attachment. Stores the new file name of
the attachment in the newname variable.

Sage CRM 2023 R2 - Developer Guide Page 200 of 403

AttachmentList object
Provides access to email attachments. Allows you to customize scripts deployed by E-mail
Management (see the System Administrator Help).

l AttachmentList properties

AttachmentList properties

l Count. Returns the number of attachments.

l Items. Returns an attachment in the form of an Attachment object.

l LibraryPath. Specifies the path to the Sage CRM library.

Count

Returns the number of attachments.

Property value

Integer (read-only)

Examples

for (i = 0; i < Attachments.Count; i++)
{

// Insert code to perform action here.
}

Specifies to perform some action on all attachments.

Items

Returns an attachment in the form of an Attachment object.

Property value

Integer. The index of the attachment.

Sage CRM 2023 R2 - Developer Guide Page 201 of 403

Examples

for (i = 0; i < Attachments.Count; i++)
{
 AttItem = Attachments.Items(i);

// Insert code to perform action here.
}

Stores each attachment in the AttItem variable, and then performs the specified action on the
attachment.

LibraryPath

Specifies the path to the Sage CRM library. This is the Library folder in the Sage CRM installation
directory. The default location of the Library folder is %ProgramFiles%\Sage\CRM\CRM\Library.

Property value

String

Examples

var libdir = Attachments.LibraryPath + "\\" + CompanyQuery("comp_name");

Sage CRM 2023 R2 - Developer Guide Page 202 of 403

CRM object
Provides access to Sage CRM objects and functionality. Exposes methods that allow you to create
new objects, get existing objects, and execute objects.

Child objects: CRMBase object and CRMSelfService object.

In some legacy code (for example, in the include file), the CRM object may be instantiated as
eWare. Existing code that refers to eWare blocks or the eWare object still works, and CRM and
eWare are interchangeable (except in the context of CRMSelfService).

l CRM methods

l CRM properties

CRM methods

l AddContent(Content). Adds the value in its parameter to the page in memory and returns
that value when the GetPage() method is called.

l CreateQueryObj(SQL, Database). Creates a new query object from the system database or
an external database to which Sage CRM is connected.

l CreateRecord(TableName). Creates a new record object in a specified database table.

l FindRecord(TableName, QueryString). Finds and retrieves a record object from a
specified database table.

l Form(ElementName, Options). Retrieves the values of form elements posted to the HTTP
request body. Allows you to filter the values to be returned.

l GetBlock(BlockName). Retrieves a Sage CRM block.

l GetCustomEntityTopFrame(Entity). Retrieves the top content (the icon, caption, and
description) for a custom entity.

l GetPage(). Returns the page contents that have been previously added by the AddContent
method.

l GetTrans(Family, Caption). Returns the translation for a caption in the specified caption
family, based on user's current language.

l QueryString(ParameterName, Options). Retrieves the values of the parameters in the
HTTP query string. Allows you to filter the values to be returned.

l RefreshMetaData(Family). Updates the Sage CRM internal cache with new information.

l SetContext(EntityName, EntityID). Updates the recent list for the specified custom
entity.

Sage CRM 2023 R2 - Developer Guide Page 203 of 403

AddContent(Content)

Adds the value in its parameter to the page in memory and returns that value when the GetPage()
method is called. You can use this value in scripts to pass something that is only available on the
server side, such as the current user's email address.

In Sage CRM version 7.2b and later, all ASP pages must use the AddContent() and GetPage()
methods to build the HTML for the page. This is required to ensure the correct rendering of the
page structure and links, including the left-hand main menu, horizontal tabs, and top content.

Parameters

Content. Specifies the string value returned by the Execute(Arg) method.

Examples

var MyList;
MyList = CRM.GetBlock('PersonGrid');
CRM.AddContent(MyList.Execute("pers_lastname like 'B%'"));
Response.Write(CRM.GetPage());

CRM.AddContent('<' + 'script>var defaultemailaddress=\'' + CRM.UserOption('defaultemailaddress')
+ '\'<' + '/script>');

CreateQueryObj(SQL, Database)

Creates a new query object from the system database or an external database to which Sage CRM is
connected.

This method can return different data than the FindRecord(TableName, QueryString) method
for the following reasons.
The CreateQueryObject method creates a new connection, uses a transaction that is different from
the one used for update, and thus can only work with data that is actually in the database. The
commit takes place after table-level scripts are run.
The FindRecord(TableName, QueryString) method, however, uses the dispatch connection, so
it's the same transaction as the one used by the update. Therefore, this method can work with
uncommitted data.

Sage CRM 2023 R2 - Developer Guide Page 204 of 403

Parameters

l SQL. Specifies a valid SQL string.

l Database. Specifies the database to use. When this parameter is omitted, the system
database is used by default.

Examples

var Query;
Query = CRM.CreateQueryObj("Select * from vcompany");
Query.SelectSql(); CRM.AddContent(Query.FieldValue("comp_name"));
while (!Query.eof) {
 CRM.AddContent(Query.FieldValue("comp_name") + '');
 Query.NextRecord();
}
Response.Write(CRM.GetPage());

Creates a query object from the company view by using the system database.

CreateRecord(TableName)

Creates a new record object in a specified database table. To save the record object, you must call
the SaveChanges() method. The SaveChanges() method is automatically called by the Execute
(Arg) method of most blocks when the mode is set to Save.

Parameters

TableName. Specifies the name of the table where the record is to be created. This can be the
Sage CRM system database or an external database to which Sage CRM is connected.

Examples

< !-- #include file = "sagecrm.js"-- >

<%
var Comp;
var block;
Comp = CRM.CreateRecord('company');
Comp.item('comp_Name') = 'My company';
Comp.SaveChanges();
block = CRM.GetBlock("companygrid");
CRM.AddContent(block.Execute(''));
Response.Write(CRM.GetPage());
%>

Creates a new company record.

Sage CRM 2023 R2 - Developer Guide Page 205 of 403

FindRecord(TableName, QueryString)

Finds and retrieves a record object from a specified database table.

Parameters

l TableName. Specifies the database table from which you want to retrieve a record object.

l QueryString. Specifies the SQL WHERE clause that identifies the record object.

Example

var ThisPersonId;
var PersonBlock;
ThisPersonId = CRM.GetContextInfo('Person','Pers_PersonId');
ThisPersonRecord = CRM.FindRecord('Person','Pers_Personid='+ThisPersonId);
PersonBlock = CRM.GetBlock('PersonBoxLong');
CRM.AddContent(PersonBlock.Execute(ThisPersonRecord));
Response.Write(CRM.GetPage());

Displays a record summary for the current person.

Form(ElementName, Options)

Retrieves the values of form elements posted to the HTTP request body. Allows you to filter the
values to be returned. Provides an additional level of security in Sage CRM customizations.

Parameters

l ElementName. Specifies the name of the form element to retrieve.

l Options. Allows you to filter the form element values to retrieve. Can take one or several of
the following values:

l IntegersOnly. Returns only integers from the form element value. This value is
useful if you want to get a record ID.

l WordOnly. Returns only the following characters from the form element value:
A-Z, a-z, 0-9, underscore (_). This value is useful if you're expecting a single value to
be returned.

l SQLInjection. Applies a SQL injection filter to protect against SQL injection
attacks. If an injection attempt is identified, a blank value is returned.

l XSS. Applies a cross-site scripting filter to protect against XSS attacks. Returns only
content that passes the filter. This value is useful if you expect plain text to be
returned.

When using several Options values, use a comma as a separator.
When the Options parameter is omitted, SQLInjection and XSS are used by default.

Sage CRM 2023 R2 - Developer Guide Page 206 of 403

Return value

String

Examples

var MyElement = CRM.Form('MyElement', 'SQLInjection, XSS')

Applies both the SQL injection and cross-site scripting filters. This line of code performs the same
action as var MyElement = CRM.Form('MyElement')

GetBlock(BlockName)

Retrieves a block. Use this method to call child blocks of the CRM object. For more information,
see Blocks.

Parameters

BlockName. Specifies the name of the block, existing screen or list in Sage CRM to retrieve.

Examples

var Marquee;
Marquee = CRM.GetBlock("marquee");

Retrieves a new marquee block and stores it in the Marquee variable.

var Search;
var List;
var Container;
Search = CRM.GetBlock("CompanySearchBox");
List = CRM.GetBlock("CompanyGrid");
Container = CRM.GetBlock("Container");
Container.AddBlock(Search);
Container.AddBlock(List);
CRM.AddContent(Container.Execute());
Response.Write(CRM.GetPage());

Gets a Container, Search (CompanySearchBox), and List (CompanyGrid) block. Adds the search
screen and list to the container and displays the container. You can configure the Execute method
to use the search results as the argument for the list.

GetCustomEntityTopFrame(Entity)

Retrieves the top content (the icon, caption, and description) for a custom entity.

Sage CRM 2023 R2 - Developer Guide Page 207 of 403

Parameters

Entity. Specifies the name of the entity for which to retrieve the top content.

Examples

CRM.GetCustomEntityTopFrame("Lease");

Retrieves the top content for the custom entity named Lease.

GetPage()

Returns the page contents that have been previously added by the AddContent method. The
contents are returned in the format specified by the current device.

In Sage CRM version 7.2b and later, all ASP pages must use the AddContent() and GetPage()
methods to build the HTML for the page. This is required to ensure the correct rendering of the
page structure and links, including the left-hand main menu, horizontal tabs, and top content.

Parameters

TabGroupName. Optional. Specifies the tab group name that includes the tabs to be passed to the
method. In this case, the method shows the passed tabs instead of the current default tabs.

Examples

<!-- #include file = "sagecrm.js"-->
<%
var Comp;
var block;
Comp = CRM.CreateRecord('company');
Comp.item('comp_Name') = 'My company';
Comp.SaveChanges();
block = CRM.GetBlock("companygrid");
CRM.AddContent(block.Execute(''));
Response.Write(CRM.GetPage());
%>

Creates a new Company record.

GetTrans(Family, Caption)

Returns the translation for a caption in the specified caption family, based on user's current
language.

Self-Service users can set the language using the VisitorInfo method, for example:

Sage CRM 2023 R2 - Developer Guide Page 208 of 403

CRM.VisitorInfo("Visi_Language")='DE';

Parameters

l Family. Specifies the name of the caption family to which the caption belongs. To view
available caption families and caption types, go to <My Profile> | Administration |
Customization | Translations.

l Caption. Specifies the name of the caption.

Examples

CRM.AddContent(CRM.GetTrans('GenCaptions','Screen'));
Response.Write(CRM.GetPage());

Displays the word Screen in the user's current language, provided that the translation in that
language has already been added to Sage CRM translations.

QueryString(ParameterName, Options)

Retrieves the values of the parameters in the HTTP query string. Allows you to filter the values to
be returned. Provides an additional level of security in Sage CRM customizations.

Parameters

l ParameterName. Specifies the name of the parameter to retrieve.

l Options. Allows you to filter the parameter values to retrieve. Can take one or several of
the following values:

l IntegersOnly. Returns only integers from the parameter value. This value is useful
if you want to get a record ID.

l WordOnly. Returns only the following characters from the parameter value:
A-Z, a-z, 0-9, underscore (_). This value is useful if you're expecting a single value to
be returned.

l SQLInjection. Applies a SQL injection filter to protect against SQL injection
attacks. If an injection attempt is identified, a blank value is returned.

l XSS. Applies a cross-site scripting filter to protect against XSS attacks. Returns only
content that passes the filter. This value is useful if you expect plain text to be
returned.

When using several Options values, use a comma as a separator.
When the Options parameter is omitted, SQLInjection and XSS are used by default.

Sage CRM 2023 R2 - Developer Guide Page 209 of 403

Return value

String

Examples

var myParam = CRM.QueryString('MyParameter', 'SQLInjection, XSS')

Applies both the SQL injection and cross-site scripting filters. This line of code performs the same
action as var myParam = CRM.QueryString('MyParameter')

RefreshMetaData(Family)

Updates the Sage CRM internal cache with new information. For example. when the custom_
captions table was edited or new records were added.

Parameters

Family. Specifies the caption family to update (capt_family).

Examples

var NewCaption;
NewCaption = CRM.CreateRecord("Custom_Captions");
NewCaption.Capt_FamilyType = "Choices";
NewCaption.Capt_Family = "Comp_Status";
NewCaption.Capt_Code = "Open";
NewCaption.Capt_US = "Open";
NewCaption.SaveChanges();
CRM.RefreshMetaData("Comp_Status");

Adds a new entry named Open to the Comp_Status caption family.

The CreateRecord(TableName) method adds a new record to the Custom_Captions table. Then,
data is entered into the relevant table fields and the SaveChanges() method saves the changes to
the database. The RefreshMetaData(Family) method refreshes the Sage CRM cache.

SetContext(EntityName, EntityID)

Updates the recent list for the specified custom entity.

Sage CRM 2023 R2 - Developer Guide Page 210 of 403

Parameters

l EntityName. Specifies the name of the custom entity

l EntityId. Specifies the custom entity ID as it appears in custom_tables.

Examples

CRM.SetContext(EntityName,Id);

CRM properties

Mode. Sets a mode for a block.

Mode

Sets a mode for a block. The values this property can take are defined in the include file.

Take care when changing modes: you may unintentionally lock down a screen if the conditions you
specify are not precise.

Property values

l 0 or View. Sets the mode to View.

l 1 or Edit. Sets the mode to Edit.

l 2 or Save. Sets the mode to Save.

Examples

if (CRM.Mode < Edit) {
 CRM.Mode = Edit;
}

Changes the mode to Edit if the current mode is View.

CRM.Mode = Edit; if (error != "") {
 CRM.Mode = Save;
 CRM.AddContent(error);
 Response.Write(CRM.GetPage());
}

Sage CRM 2023 R2 - Developer Guide Page 211 of 403

Changes the mode to Save if an error has occurred. Also displays the error.

Sage CRM 2023 R2 - Developer Guide Page 212 of 403

CRMBase object
Sets up the context information for the current view and displays the tabs for that view. This
object contains all Sage CRM custom metadata.

l CRMBase methods

l CRMBase properties

CRMBase methods

l Button. Returns the text, image, and link for a Sage CRM button.

l GetContextInfo(Entity, FieldName). Returns the named field from a table based on the
current context.

l GetTabs(TabGroup). Returns the specified group of tabs.

l Logon(LogonId, Password). Allows you to log on to Sage CRM from a command prompt.

l Url(Action). Transforms a URL to the format required by Sage CRM.

l ConvertValue(Avalue, AfromCurr, AToCurr). Converts a value from one currency to
another.

Button

Returns the text, image, and link for a Sage CRM button. These buttons are typically the generic
buttons that appear on screens and containers. For example, you can use this method to add
buttons that open web sites or ASP pages.

Parameters

l Caption. Specifies the caption for the button. The caption is translated based on the user's
language, provided that a matching translation exists for the caption.

l ImageName. Specifies the image to display on the button. The image must be stored in
the Img folder located in the Sage CRM installation directory.

l URL. Specifies the URL to link the button to. This can be a web address or a custom page
located in the CustomPages folder in the Sage CRM installation directory.

l PermissionsEntity. Specifies the entity name. Allows you to add the button based on a
users security profile for an entity.

l PermissionsType. Specifies permissions to apply. This can be VIEW, EDIT, DELETE, or
INSERT, depending on the action the button performs. Allows you to add the button based

Sage CRM 2023 R2 - Developer Guide Page 213 of 403

on a users security profile for an entity.

l Target. Sets the TARGET property of the button's anchor.

Examples

CRM.AddContent(CRM.Button("My button","MyImage.gif", CRM.Url("MyPage.asp")));
Response.Write(CRM.GetPage());

Displays a button named My button. This button contains an image stored in the MyImage.gif file
and is linked to the MyPage.asp file.

GetContextInfo(Entity, FieldName)

Returns the named field from a table based on the current context. Use this method to return the
RecordID for a table which you can use to build an SQL query. For example, to create charts.

Parameters

l Entity. Specifies the entity from which to return the field. This can be: Person, Company,
Opportunity, Lead, Case, Solution, Channels (teams), Campaigns, Waves, Wave Items,
SelectedUser (applicable when viewing the My CRM list), User (currently logged on user).

l FieldName. Specifies the name of the field to be returned.

Examples

GetContextInfo("case", "case_description");

Returns description for the case that the user is currently viewing.

ThisCompanyId = CRM.GetContextInfo('Company','Comp_CompanyId');
CaseListBlock = CRM.GetBlock('CaseList');
SearchSql = 'Case_PrimaryCompanyId='+ThisCompanyId + " and
Case_Status='In Progress' ";
CRM.AddContent(CaseListBlock.Execute(SearchSql));
Response.Write(CRM.GetPage());

Displays cases that are currently in progress for the current company context.

This example obtains the unique company ID. Company ID is used in a SQL statement, which
selects all cases that match the company's ID and have an In Progress status.

The GetBlock(BlockName) method returns a CRMListBlock object of type CaseList, which is
stored in the CaseListBlock variable .

Sage CRM 2023 R2 - Developer Guide Page 214 of 403

The SELECT statement used to extract the required cases is passed to the CaseListBlock's Execute
function. The populated CaseListBlock is then passed as an argument to the AddContent(Content)
method to store the page in memory.

Response.Write outputs the generated HTML to the screen.

GetTabs(TabGroup)

Returns the specified group of tabs. You can use this method to specify a new tab group that you
want displayed from a menu option.

Only invoke this method if you are using an old include file (for example, CRM.js). Include this
method at the top of your ASP file and after the CRM.js include file. This method is not needed if
you use the SAGECRM.js or ACCPACCRM.js include file.

Parameters

TabGroup. Specifies the name of the group of tabs to return.

Examples

<% CRM.GetTabs("NewTabGroupName") %>

Adds a new menu button that displays a new tab group. The button links to an ASP that includes
the GetTabs method.

<% CRM.GetTabs() %>

Displays tabs for the current entity.

<% Response.Write(CRM.GetTabs()) %>

Displays tabs for the current entity.

Logon(LogonId, Password)

Allows you to log on to Sage CRM from a command prompt.

To use this method, make sure to set the External Logon Allowed option for the relevant user to
true in <My Profile> | Administration | Users | Users.

Do not use this method in ASP or .NET. When this method is used, no metadata is available.

Sage CRM 2023 R2 - Developer Guide Page 215 of 403

Parameters

l LogonId. Specifies the user name to log on with.

l Password. Specifies the password that matches the user name.

Return value

l <Blank string>. Indicates that logon has succeeded.

l <Error code>. Indicates that logon has failed.

Examples

var CRM = new ActiveXObject('CRM.< Installation Folder>');
CRM.Logon("<user name>", "<password>");

Allows you to start using the Sage CRM object under a specified user account. Place this code in
an external JavaScript page. You can copy and paste your encrypted password from the system
database. It is a good practice to create a dedicated user account for external access to the system
with limited access rights.

Url(Action)

Transforms a URL to the format required by Sage CRM. You can use the returned URL to create a
link in Sage CRM.

Parameters

Action. Specifies a URL, ASP file, or .NET DLL file and method. If it's an ASP file, custompages is
prepended and the CRM context information is appended. You can also pass in an action string.
Anything else returns the action untouched.

Examples

CRM.AddContent(CRM.Button("Chart","Cancel.gif",CRM.Url("system/InvChart.asp")));
Response.Write(CRM.GetPage());

Displays a button that links to an ASP page.

<a href='*<%=CRM.Url("http://www.mydomain.com")%>'>Click here to open the web site

Creates an anchor that links to the specified web site.

Sage CRM 2023 R2 - Developer Guide Page 216 of 403

myContainer.AddButton(CRM.Button(“Add”,”new.gif”,CRM.Url(“QuickLook.dll-RunQuickLook”)));

Creates a link that references the RunQuickLook base method of a .NET DLL(QuickLook.dll).

ConvertValue(Avalue, AfromCurr, AToCurr)

Converts a value from one currency to another.

Parameters

l AValue. Specifies the value to be converted.

l AFromCurr. Specifies the identifier of the currency to convert from. The currency must
exist in the Curr_CurrencyID field of the Currency table, otherwise an error is returned.

l AToCurr. Specifies the identifier of the currency to convert to. The currency must exist in
the Curr_CurrencyID field of the Currency table, otherwise an error is returned.

Return value

String containing the converted value formatted to the number of decimals specified for the
currency in the AToCurr parameter.

Examples

var iValue;
var iFromCurr;
var iToCurr;
iValue = 50, 000;
iFromCurr = 1;
// Where 1 is the identifier of Euro.
iToCurr = 2;
// Where 2 is the identifier of British Pound.
CRM.AddContent("British Pound: " + CRM.ConvertValue(iValue, iFromCurr, iToCurr));
Response.Write(CRM.GetPage());

Converts 50,000 from Euro to British Pound.

CRMBase properties

l FastLogon. Disables the loading of metadata cache when a user logs on externally.

l TargetLists. Retrieves a CRMTargetLists object.

Sage CRM 2023 R2 - Developer Guide Page 217 of 403

FastLogon

Disables the loading of metadata cache when a user logs on externally. Use this property with the
Logon(LogonId, Password) method.

Property values

l 1(default). Off.

l 2. Low.

l 3. High.

Examples

var CRM = new ActiveXObject('CRM.<CRMinstalldir>');
CRM.FastLogon = 1;
CRM.Logon("administrator", "P@ssw0rd");

Disables the loading of metadata cache and logs on the administrator account.

TargetLists

Retrieves a CRMTargetLists object. For examples, see CRMTargetLists object.

Sage CRM 2023 R2 - Developer Guide Page 218 of 403

CRMBlock object
Is the base for all CRM blocks. The specific block type called by the CRM object determines the
actual implementation of each CRMBlock methods and properties.

Preceding code:

var block = CRM.GetBlock("myblock");

l CRMBlock methods

l CRMBlock properties

CRMBlock methods

l Execute(Arg). Executes the Sage CRM block and returns the display contents of the block.

l Validate(). Validates data entries.

Execute(Arg)

Executes the Sage CRM block and returns the display contents of the block.

Parameters

Arg (optional). Specifies any value that relates to the block type.

Example

var list = CRM.GetBlock("personlist");
CRM.AddContent(list.Execute());
Response.Write(CRM.GetPage());

Executes the personlist block.

Validate()

Validates data entries. For example, this method checks to see if a required field is filled in. This
method is normally used in if statements.

Sage CRM 2023 R2 - Developer Guide Page 219 of 403

Examples

if ((CRM.Mode==Save) && (!block.Validate()))
{

 error="Please correct the highlighted entries";
 CRM.Mode=Edit;
 }

Validates the relevant fields and displays an error message if validation has failed.

CRMBlock properties

l ArgObj. Provides an alternative way to pass parameters to a block that is a container.

l CheckLocks. Specifies whether to check if a record is in use before allowing the record to
be edited.

l DisplayForm. Specifies whether the block wraps itself in a form element.

l FormAction. Sets the action that the form takes.

l Height. Sets the block position in pixels or percent from the top of the screen.

l Name. Sets or gets the name of the current block.

l NewLine. Specifies whether the block appears on a new line.

l ShowValidationErrors. Sets whether to display validation errors when a user incorrectly
enters information in an entry box.

l Title. Sets the block title.

l ViewName. Specifies the name of the view on which the list is based.

l Width. Sets the block width in pixels or as a percentage of screen.

l Mode. Sets a mode for the ASP page.

ArgObj

Provides an alternative way to pass parameters to a block that is a container.

Examples

SearchContainer = CRM.GetBlock('Container');
SearchBlock = CRM.GetBlock('PersonSearchBox');
SearchContainer.AddBlock(SearchBlock);
if (CRM.Mode == 2)

{
 resultsBlock = CRM.GetBlock('PersonGrid');
 resultsBlock.ArgObj = SearchBlock;
 SearchContainer.AddBlock(resultsBlock);

Sage CRM 2023 R2 - Developer Guide Page 220 of 403

 }
CRM.AddContent(SearchContainer.Execute());
Response.Write(CRM.GetPage);

Passes the SearchBlock result as the argument to the list block and displays the relevant search or
results list.

CheckLocks

Specifies whether to check if a record is in use before allowing the record to be edited. If the
record is in use, displays an error message. Only applicable on EntryGroup or Container blocks.

Property values

l true (default). Specifies to check if a record is in use.

l false. Disables the check.

The property values are case-sensitive.

Examples

Block = CRM.GetBlock("companyboxlong");
Block.CheckLocks = false;

Specifies not to check if record is in use.

DisplayForm

Specifies whether the block wraps itself in a form element.

Property values

l true (default). Specifies that the block wraps itself.

l false. Specifies that the block does not wrap itself and data is not saved in the form.

Examples

block = CRM.GetBlock("companyboxlong");
block.DisplayForm = true;
CRM.AddContent(block.execute());
Response.Write(CRM.GetPage());

Sage CRM 2023 R2 - Developer Guide Page 221 of 403

Wraps the companyboxlong block in a form element, which means it follows the normal
save/change steps (such as performing validation tasks).

FormAction

Sets the action that the form takes. You can use this property only if the DisplayForm property is
set to true. By default, the form action is blank, which causes a submit to return to the same page.

Property parameters

None

Examples

block.FormAction = "mypage.asp";

Height

Sets the block position in pixels or percent from the top of the screen. The value of this property
determines how far the block appears from the top of the screen.

Property parameters

None

Examples

var block = CRM.GetBlock("companyboxlong");
block.Height="150";
CRM.AddContent(block.Execute());
Response.Write(CRM.GetPage());

Sets the block to be 150 pixels from the top of the screen.

Name

Sets or gets the name of the current block.

Property parameters

Name. String. Specifies the new name for the block instance.

Sage CRM 2023 R2 - Developer Guide Page 222 of 403

Examples

var block=CRM.GetBlock("entry");
block.Name="My New Block";
CRM.AddContent(block.Name);
Response.Write(CRM.GetPage());

Sets the block and returns the block name.

NewLine

Specifies whether the block appears on a new line. This property is only applicable to
CRMEntryBlock object or CRMEntryGroupBlock object in a container.

This is the same as selecting New Line in the Position property from <My Profile> |
Administration | Customization | <Entity> | Blocks.

Property values

l true (default). Specifies that the block appears on a new line.

l false. Specifies that the block doesn't appear on a new line.

Examples

var group = CRM.Getblock("container");
var block = CRM.GetBlock("companyboxlong");
group.AddBlock(block);
var block2 = CRM.GetBlock("personboxshort");
block2.NewLine=false;group.AddBlock(block2);
CRM.AddContent(Group.Execute());
Response.Write(CRM.GetPage());

Inserts two Entry blocks into a container side-by-side.

ShowValidationErrors

Sets whether to display validation errors when a user incorrectly enters information in an entry box.

Property values

l true (default). Specifies to display validation errors.

l false. Specifies not to display validation errors.

Sage CRM 2023 R2 - Developer Guide Page 223 of 403

Examples

var MyBlock;
MyBlock = CRM.GetBlock("entrygroup");
MyBlock.ShowValidationErrors = false;

Specifies not to display validation errors.

Title

Sets the block title.

This is the same as setting the Title field value from <My Profile> | Administration |
Customization | <Entity> | Blocks.

Examples

var block = CRM.GetBlock("companyboxlong");
block.Title="My Block";
CRM.AddContent(block.Execute());
Response.Write(CRM.GetPage());

Sets the company summary block title.

ViewName

Specifies the name of the view on which the list is based. Only use this property with
CRMListBlock object.

Examples

var NewList = CRM.GetBlock("PersonList");
NewList.ViewName="vListCommunication";
NewList.AddGridCol("Pers_FullName");
CRM.AddContent(NewList.Execute(""));
Response.Write(CRM.GetPage());

Creates a new list based on the vListCommunication view.

Width

Sets the block width in pixels or as a percentage of screen.

Sage CRM 2023 R2 - Developer Guide Page 224 of 403

Examples

var block = CRM.GetBlock("companyboxlong");
block.Width="40%";
CRM.AddContent(block.Execute());
Response.Write(CRM.GetPage());

Sets the width of the company summary box to 40%.

Mode

Sets a mode for the ASP page. This allows you to control what happens to certain blocks when they
are executed.

Property values

l 0. Sets the mode to View.

l 1. Sets the mode to Edit.

l 2. Sets the mode to Save.

l 3. Sets the mode to PreDelete.

l 4. Sets the mode to PostDelete.

Constants are declared for these values in the Sage CRM include files.

Examples

var Record = CRM.CreateRecord("Case");
var EntryGroup = CRM.GetBlock("CaseDetailBox");
if (CRM.Mode == 0)

{
 CRM.Mode = 1;
 }
CRM.AddContent(EntryGroup.Execute(Record));
Response.Write(CRM.GetPage());

If the CRM.Mode of the EntryGroup block is set to View (0), this example changes the mode to
Edit (1) and displays the block in that mode.

Sage CRM 2023 R2 - Developer Guide Page 225 of 403

CRMChartGraphicBlock object
Use this object to draw charts and graphs.

The ASP page author controls the type of chart and associated parameters. In addition, the ASP
author chooses the database query to use for the chart or graph. The CRMChartGraphicBlock object
inherits all GraphicBlock capabilities and adds the ability to generate a variety of charts.

Syntax to initiate the CRMChartGraphicBlock object:

ChartGraph = CRM.GetBlock('chart');

l CRMChartGraphicBlock methods

l CRMChartGraphicBlock properties

CRMChartGraphicBlock methods

l BackGradient(Visible, StartColor, EndColor). Applies a gradient to the background of a
chart.

l ChartTitle(text). Sets a title for the chart.

l ManualChartEntry(Value, MakeNull=true/false). Creates a chart where the data is not
contained in a Sage CRM table.

l ShowLegend(true/false). Determines whether to show or hide the legend for the chart.

l Style(Stylename). Sets the style of the chart.

BackGradient(Visible, StartColor, EndColor)

Applies a gradient to the background of a chart.

Parameters

l Visible. Specifies whether the background gradient is visible.
Can take one of the following values:

l True

l False
l StartColor. Specifies the name of start color to be used for the background gradient. This
parameter accepts a WideString value.

l EndColor. Specifies the name of end color to be used for the background gradient. This
parameter accepts a WideString value.

Sage CRM 2023 R2 - Developer Guide Page 226 of 403

Examples

ChartGraph.BackGradient(true,'Blue','White');

Sets a blue gradient that fades to white.

ChartTitle(text)

Sets a title for the chart. If no chart title is set, the title is removed allowing more room for the
chart.

Parameters

Text. Sets a title for the chart. This parameter accepts a WideString value.

Examples

ChartGraph.ChartTitle('Case Priority');

Sets the chart title to "Case Priority".

ManualChartEntry(Value, MakeNull=true/false)

Creates a chart where the data is not contained in a Sage CRM table.

It enables data to be hardcoded into a chart without relying on it being in a table. The parameters
passed vary depending on the style of table in use (for example, bar).

Parameters

l Value. Sets a value for a chart entry. This parameter accepts a WideString value.

l MakeNull. Defines whether the corresponding chart entry is blank. Accepts one of the
following values:

l True

l False

Examples

ChartGraph.ManualChartEntry('10,Jan',false);

Sage CRM 2023 R2 - Developer Guide Page 227 of 403

ChartGraph.ManualChartEntry('10,Feb',false);

ChartGraph.ManualChartEntry('+5,Feb',false);

ChartGraph.ManualChartEntry('20,Mar',false);

ChartGraph.ManualChartEntry('30,Apr',false);

ChartGraph.ManualChartEntry('-5,Apr',false);

ShowLegend(true/false)

Determines whether to show or hide the legend for the chart.

Parameters

Boolean. Sets whether or not to show the chart legend. Can take one of the following values:

l True. Specifies to show the legend.

l False. Specifies to hide the legend.

Examples

ChartGraph.ShowLegend(true);

Shows the chart legend.

Style(Stylename)

Sets the style of the chart.

Parameters

Stylename. Specifies the name of the chart style to be used. This parameter accepts one of the
following text values:

l Bar (default). Standard bar chart.

l Hbar. Horizontal bar chart.

l Line. Line graph.

Sage CRM 2023 R2 - Developer Guide Page 228 of 403

l Stairs. Line graph in the form of stairs.

l Pie. Pie chart.

l FastLine. More basic line graph.

l Area. Filled form of Line graph.

l Point. Rectangular points are used.

l Arrows. Values are shown with arrows.

l Bubbles. Values are shown with bubbles

Examples

ChartGraph.Style('Pie');

Sets the chart style to Pie.

CRMChartGraphicBlock properties

l LabelX. Sets the text label for the X-axis (horizontal) of a chart.

l LabelY. Sets the text label for the Y-axis (vertical) of a chart.

l SQLText=Text. Uses a SQL query to retrieve and assign values to the LabelX, LabelY, and
XLProp=text parameters from the specified database table. This only occurs if no values
were set for the mentioned parameters.

l XLProp=text. Specifies values to be displayed on the X-axis.

l Xprop=text. Sets the field name to be used along the X-axis.

l Yprop=text. Sets the field name to be used along the Y-axis.

LabelX

Sets the text label for the X-axis (horizontal) of a chart.

Values

Text. Specifies the text label for the X-axis. This parameter accepts a WideString value.

Examples

ChartGraph.LabelX = 'Date';

Sets the text label of the X-axis to "Date".

Sage CRM 2023 R2 - Developer Guide Page 229 of 403

LabelY

Sets the text label for the Y-axis (vertical) of a chart.

Values

Text. Specifies the text label for the Y-axis. This parameter accepts a WideString value.

Examples

ChartGraph.LabelY = 'Certainty, %';

Sets the text label of the Y-axis to "Certainty, %".

SQLText=Text

Uses a SQL query to retrieve and assign values to the LabelX, LabelY, and XLProp=text
parameters from the specified database table. This only occurs if no values were set for the
mentioned parameters.

SQL query goes through the database table and uses the first field values that satisfy the specified
criteria as values for the parameters.

for the chart if X,Y, or XL labels haven't been set. Sage CRM navigates through the fields in the
table as defined in the SQL query and uses the first fields it finds and is able to use.

Values

Text. Specifies the SQL query to be used for retrieving and assigning values for the parameters.
This must be a WideString value.

Examples

Chart = CRM.GetBlock('chart'):
Chart.SQLText = 'Select * from OpportunityProgress Where '+
'Oppo_OpportunityId='+OppId;

XLProp=text

Specifies values to be displayed on the X-axis.

Sage CRM 2023 R2 - Developer Guide Page 230 of 403

Values

Text. Specifies the field name that stores the text values to be displayed on the X-axis. Accepts a
WideString value.

Examples

ChartGraph.XLProp = 'Fld_Date';

Uses values stored in the Fld_Date field as values for the X-axis.

Xprop=text

Sets the field name to be used along the X-axis.

Values

Text. Specifies the field name. This must be a WideString value.

Example

ChartGraph.Xprop = 'Fld_Date';

Yprop=text

Sets the field name to be used along the Y-axis.

Values

Text. Specifies the field name. This must be a WideString value.

Example

ChartGraph.Yprop = 'Fld_Date';

Sage CRM 2023 R2 - Developer Guide Page 231 of 403

CRMContainerBlock object
Use the CRMContainerBlock object to group blocks on a screen. It acts as a wrapper for other
blocks. You can nest CRMContainerBlock inside other containers. An example of a container block
is a linked search panel and related list.

A container block has standard Sage CRM buttons and any number of extra buttons. If any blocks
with buttons are included, the buttons are shown only once on the container block and then
applied to all the internal blocks. The standard CRM buttons are:

l Change or Save. Displayed as Change when the screen is in View mode and Save when the
screen is Edit mode. This button is shown by default.

l Delete or Confirm Delete. Displayed as Delete when the screen is in View mode and
Confirm Delete when the screen is in Confirm Delete mode. This button is not shown by
default.

l Continue or Cancel. Displayed as Continue when the screen is in View mode and Cancel
when the screen is in Edit or Confirm Delete mode. This button is not shown by default.

The Execute function on a block takes only one argument. When CRMContainerBlock is executed, it
passes its argument to all its item blocks as they are executed. If item blocks in a container block
require different arguments for their Execute functions, set the ArgObj property on each item block
and don't pass any argument to the container.

Syntax to create a container with two blocks:

// Create a container.
Container = CRM.GetBlock("container");
// Get two screens.
Screen1 = CRM.GetBlock("Screen1");
Screen2 = CRM.GetBlock("Screen2");
// Add the screens to the container block.
Container.AddBlock(Screen1);
Container.AddBlock(Screen2);
// Display the container block, which displays the two blocks it contains.
CRM.AddContent(Container.Execute());
Response.Write(CRM.GetPage());

l CRMContainerBlock methods

l CRMContainerBlock properties

l Code example: ShowWorkflowButtons property

l Code example: WorkflowTable and ShowNewWorkflowButtons properties

Sage CRM 2023 R2 - Developer Guide Page 232 of 403

CRMContainerBlock methods

l AddBlock(Block). Adds a block to a container.

l AddButton(ButtonString). Adds a button to the Container block.

l DeleteBlock(BlockName). Deletes the block from the container.

l GetBlock(BlockName). Returns a pointer to the specified block object that exists within
the container.

AddBlock(Block)

Adds a block to a container.

Parameters

Block. Specifies a reference to the block to be added. This can be any block previously retrieved
by using the GetBlock(BlockName) method.

Examples

MyContainer = CRM.GetBlock("container");
MyPerson = CRM.GetBlock("personboxlong");
MyCompany = CRM.GetBlock("companyboxlong");
MyContainer.AddBlock(MyPerson);
MyContainer.AddBlock(MyCompany);
CRM.AddContent(MyContainer.Execute());
Response.Write(CRM.GetPage());

Creates a container block and adds two blocks to it.

AddButton(ButtonString)

Adds a button to the Container block.

The button string must be HTML code. This HTML code is added after the other buttons are drawn.
The easiest way to get the HTML for the button is to use the Button method.

Parameters

ButtonString. Specifies HTML code to render the button. This should be a link within a <table>
tag in the ASP page. This parameter accepts a string value.

Sage CRM 2023 R2 - Developer Guide Page 233 of 403

Examples

R = CRM.FindRecord('Company','Comp_CompanyId=1');
Holder = CRM.GetBlock('companyboxlong');
Holder.AddButton(CRM.Button("Try This","new.gif",CRM.Url("AnotherPage.asp")));
CRM.AddContent(Holder.Execute(R));
Response.Write(CRM.GetPage());

Adds a button named Try This to the company summary block.

DeleteBlock(BlockName)

Deletes the block from the container.

Parameters

BlockName. Specifies the name of the block to be deleted. This parameter accepts a string value.

Examples

MyC = CRM.GetBlock("CompanySummaryBlock");
userLevel = CRM.GetContextInfo("User","User_Per_Admin");
if (userLevel > 1)

{
 MyC.DeleteBlock("AddressBoxShort");
 }
CRM.AddContent(MyC.Execute());
Response.Write(CRM.GetPage());

Deletes the AddressBoxShort block for non-administrators.

The AddressBoxShort block is one of the blocks in the CompanySummaryBlock container that has
been set up in the <My Profile> | Administration | Customization | Company | Blocks area
of Sage CRM.

GetBlock(BlockName)

Returns a pointer to the specified block object that exists within the container.

Parameters

BlockName. Specifies the name of the block to return. This parameter accepts a string value.

Sage CRM 2023 R2 - Developer Guide Page 234 of 403

Examples

MyCustomContainer = CRM.GetBlock("MyCustomContainer");
R = CRM.FindRecord('Company','Comp_CompanyId=30');
MyE = MyCustomContainer.GetBlock("CompanyBoxShort");
CRM.AddContent(MyE.Execute(R));
Response.Write(CRM.GetPage());

Displays the CompanyBoxShort block in the MyCustomContainer container block. This container
block has been set up in the <My
Profile> | Administration | Customization | Company | Blocks area of Sage CRM.

CRMContainerBlock properties

l ButtonAlignment. Adjusts the alignment of the buttons on the screen.

l ButtonImage. Specifies the image file that contains an icon to be displayed on the
standard buttons.

l ButtonLocation. Sets the location of the buttons in the container.

l ButtonTitle. Overrides the default text labels on the standard buttons.

l DisplayButton. Shows or hides the standard buttons.

l Workflow properties. Use Workflow properties to include the same button types in an ASP
page for any table in the system database, including new custom tables that you've added
for a customer.

ButtonAlignment

Adjusts the alignment of the buttons on the screen.

Values

Possible values of this property are defined in the SageCrmNoLang.js include file and by default
are as follows:

l 0. Bottom.

l 1. Left.

l 2. Right.

l 3. Top.

The values this parameter can take depend on the value set in the ButtonLocation parameter.

If the ButtonLocation parameter is set to Top or Bottom, the ButtonAlignment parameter can
only be set to Left (1) or Right (2).

Sage CRM 2023 R2 - Developer Guide Page 235 of 403

If the ButtonLocation parameter is set to Left or Right, the ButtonAlignment parameter can only
be set to Top (3) or Bottom (0).

Example

Container = CRM.GetBlock("container");
Container.ButtonLocation = Top;
Container.ButtonAlignment = 1;
CRM.AddContent(Container.Execute());
Response.Write(CRM.GetPage());

Aligns the buttons to the left of the screen.

ButtonImage

Specifies the image file that contains an icon to be displayed on the standard Change or Save
button. Use this property to override the default image file for the buttons.

Values

The image file you specify must be stored in the following location:

<Sage CRM installation folder>\WWWRoot\Img\Buttons

If the image file you want to use is stored in a different location, specify the full path to the file.

Example

Container = CRM.GetBlock("container");
Container.DisplayButton(Button_Default) = true;
Container.ButtonTitle = "My Button Title";
CRM.AddContent(Container.Execute());
Response.Write(CRM.GetPage());

Sets the image and text to be displayed on the standard button.

ButtonLocation

Sets the location of the buttons in the container.

Values

Possible values of this property are defined in the SageCrmNoLang.js include file and by default
are as follows:

Sage CRM 2023 R2 - Developer Guide Page 236 of 403

l Bottom

l Left

l Right (default)

l Top

If this property is set to Top or Bottom, the buttons are shown in a horizontal line. Otherwise, they
are shown in a vertical line.

Examples

Container = CRM.GetBlock('container');
Container.DisplayButton(Button_Delete)= true;
Container.DisplayButton(Button_Continue)=true;
Container.DisplayButton(Button_Default)=true;
Container.ButtonTitle="My Button Title";
Container.ButtonLocation = Top;
CRM.AddContent(Container.Execute());
Response.Write(CRM.GetPage());

Displays the standard buttons at the top of the container.

ButtonTitle

Overrides the default text labels on the standard buttons, such as Change and Save (Button_
Default).

Value

Text. Specifies the text label to be displayed on the buttons.

Example

Container = CRM.GetBlock("container");
Container.DisplayButton(Button_Default) = true;
Container.ButtonTitle = "My Button";
CRM.AddContent(Container.Execute());
Response.Write(CRM.GetPage());

Sets the text label displayed on the standard buttons to My Button.

DisplayButton

Shows or hides the standard buttons.

Sage CRM 2023 R2 - Developer Guide Page 237 of 403

Parameters

l (Button_Default). Specifies whether to show or hide the Change and Save buttons. Can
take one of the following values:

l true. Shows the buttons.
l false. Hides the buttons.

l (Button_Delete). Specifies whether to show or hide the Delete button. Can take one of the
following values:

l true. Shows the button.

l false. Hides the button.
l (Button_Continue). Specifies whether to show or hide the Continue button. Can take one
of the following values:

l true. Shows the button.

l false. Hides the button.

The standard buttons are defined in the SageCrmNoLang.js include file.

Examples

Container = CRM.GetBlock("container");
Container.DisplayButton(Button_Delete) = true;
Container.DisplayButton(Button_Continue) = true;
Container.DisplayButton(Button_Default) = true;
CRM.AddContent(Container.Execute());
Response.Write(CRM.GetPage());

Shows all standard buttons (Change, Save, Delete, and Continue).

Workflow properties

Use Workflow properties to include the same button types in an ASP page for any table in the
system database, including new custom tables that you've added for a customer. The Container
block has three properties that enable Workflow functionality:

l WorkflowTable. Sets the table for the ShowNewWorkflowButtons property to use.

l ShowWorkflowButtons. Displays or hides the workflow buttons on a view or edit screen for
a record.

l ShowNewWorkflowButtons. Displays or hides a New button on a screen that shows a list
of records.

Use these properties on tables for which you've configured workflow rules and states and want to
display the rules and states as workflow buttons. For example, if you've enabled workflow on the

Sage CRM 2023 R2 - Developer Guide Page 238 of 403

Cases table in CRM, a New button is displayed for every primary workflow rule in the Cases List.
When you edit a case, workflow buttons applicable to that case are displayed.

To use Workflow properties on a new custom CRM table, the table connection must have CRM
required fields: xxx_createdby, xxx_createddate, xxx_updatedby, xxx_updateddate, xxx_timestamp,
and xxx_deleted (where xxx is the prefix on all the fields in that table). The following conditions
also apply:

l There must be a numeric field on the table to hold the workflow ID. This is typically called
xxxx_workflowid.

l When creating the table link, enter the name of your workflow ID field on the Table Details
screen. For more information, see Database.

l Configure the workflow rules, states, and tree for the table in <My Profile> |
Administration | Advanced Customization | Workflow. For more information, see the
System Administrator Guide or Help.

The Primary rules for a workflow on a new internal table must:

l Use the Custom File Name property. Typically this points to the edit.asp file page that
displays the entry group.
The .asp file specified in the Custom File Name property must:

l Use a Container block (such as container, list, or entry group).

l Set the Container Block WorkflowTable property to the table name.

l Set the Container Block ShowWorkflowButtons property to true.

l Pass in the Record object as the argument to the Execute method of the container.
l Have at least one field action, for example all Primary rules.

l The field actions must not include any fields that are already shown by the ASP page.

WorkflowTable

Sets the table for the ShowNewWorkflowButtons property to use.

Parameters

TableName. Specifies the name of the table.

Example

Container = CRM.GetBlock('container');
Container.WorkflowTable = 'company';

Causes the ShowNewWorkflowButtons property to use the Company table.

Sage CRM 2023 R2 - Developer Guide Page 239 of 403

ShowWorkflowButtons

Displays or hides workflow buttons on a view or edit screen for a record.

Pass the Record block as the argument to the Execute(Arg) method. You cannot set the Record
object in the ArgObj property.

Values

This property can take one of the following values:

l true. Displays the workflow buttons.

l false. Hides the workflow buttons.

Examples

Record = CRM.FindRecord('MyTable','Table_Id=99');
EntryGroup = CRM.GetBlock('MyTableBlock');
EntryGroup.ShowWorkflowButtons = true;
CRM.AddContent(EntryGroup.Execute(Record));
Response.Write(CRM.GetPage());

Displays the workflow buttons on the EntryGroup object.

ShowNewWorkflowButtons

Displays or hides a New button on a screen that shows a list of records.

The New button creates a record in a workflow. To specify the table to be used by this property,
use the WorkflowTable property.

Values

This property can take one of the following values:

l true. Displays the New button.

l false. Hides the New button.

Example

List = CRM.GetBlock('MyTableList');
List.WorkflowTable = 'MyTable';
List.ShowNewWorkflowButtons = true;
CRM.AddContent(List.Execute(''));
Response.Write(CRM.GetPage());

Sage CRM 2023 R2 - Developer Guide Page 240 of 403

Shows the New button.

Code example: ShowWorkflowButtons property

The ASP file that contains the below code can be referred to as:

l The custom file name in the List to jump to. In this case it shows the edit screen for one
record in the table and the workflow buttons for the current record.

l The custom file name in the Primary rule. In this case the page creates a new record in the
workflow.

<!-- #include file ="sagecrm.js" -->;
<%
Response.Write(CRM.GetTabs());
ThisId = Request.QueryString("Tab_TableId");
TableDetailBox = CRM.GetBlock("MyTableEntryBox");
Holder = CRM.GetBlock('container');
Holder.AddBlock(TableDetailBox);
with (TableDetailBox)

{
// Display the Delete button.

 DisplayButton(Button_Delete) = true;
// Display the Continue button. This button takes the user back to the list.

 DisplayButton(Button_Continue) = true;
Title = "My Table Details";

 }

// If no ID was passed, then switch to the New mode.
if (!Defined(ThisId))

{
MyRecord = CRM.CreateRecord("MyTable");

 if (CRM.Mode <= Edit)CRM.Mode = Edit;
 }
else

{
MyRecord = CRM.FindRecord("MyTable","Tab_TableId = "+ThisId);

 }

Holder.ShowWorkflowButtons = true;
Holder.WorkflowTable = 'MyTable';
CRM.AddContent(Holder.Execute(MyRecord));
Response.Write(CRM.GetPage());
%>

Code example: WorkflowTable and ShowNewWorkflowButtons
properties

The following ASP code demonstrates how to use the WorkflowTable and ShowWorkflowButtons
properties. This code displays a list of records and buttons for any Primary rules on the workflow
for MyTable if the primary rules are configured to use a custom file.

Sage CRM 2023 R2 - Developer Guide Page 241 of 403

<!-- #include file ="sagecrm.js" -->
<%
Response.Write(CRM.GetTabs());
MyList=CRM.GetBlock("MyTableList");
// To show the button on the right, put the list into a container and add the button to the
container.
Holder = CRM.GetBlock("container");
// Add the list to the container.
Holder.AddBlock(MyList);
// Hide the default Edit/Save button on the container.
Holder.DisplayButton(Button_Default) = false;
// Configure the list to show all records.
MyList.ArgObj = '';
// Show the new workflow buttons for the Primary rules.
Holder.WorkflowTable = 'MyTable';
Holder.ShowNewWorkflowButtons = true;
// Display the container.
CRM.AddContent(Holder.Execute(''));
Response.Write(CRM.GetPage());
%>

Sage CRM 2023 R2 - Developer Guide Page 242 of 403

CRMContentBlock object
This object is a simple block that takes a text string and displays it on the page. Use this object in
conjunction with other blocks on a screen.

Syntax to create a content block:

// Create a content block.
Content = CRM.GetBlock("content");
Content.contents = "This is the contents";
CRM.AddContent(Container.Execute());
Response.Write(CRM.GetPage());

CRMContentBlock properties

Contents. Sets the text string for the Content block.

Contents

Sets the text string for the Content block.

Values

Text. Specifies the text to display. This must be WideString value.

Examples

test = CRM.GetBlock('content');
test.contents = '<table> <td class=tablehead>My Details</td></table>'
CRM.AddContent(test.Execute());
Response.Write(CRM.GetPage());

Sets My Details as a header for the screen.

Sage CRM 2023 R2 - Developer Guide Page 243 of 403

CRMEntryBlock object
The CRMEntryBlock object corresponds to a single field that's displayed or edited onscreen. You
can create many entry types, such as text blocks, multi-select boxes, and currency input boxes.

The CRMEntryBlock object is a child of the CRM object. You usually add entries to an entrygroup
or a container block but CRMEntryBlock doesn't inherit the properties or methods of a block to
which it's added.

You can use JavaScript scripts on these blocks to perform tasks when they load, change, and are
validated.

The CRMEntryBlock object properties are similar to the field properties available when adding
entries to a screen in the <My Profile> | Administration | Customization area of Sage CRM.

Preceding code:

EntryGroup = CRM.GetBlock("GroupBlockName");
EntryGroup.AddEntry("entryname");
Entry = EntryGroup.GetEntry("entryname");

l CRMEntryBlock methods

l CRMEntryBlock properties

CRMEntryBlock methods

RemoveLookup. Removes specified items from the lists.

RemoveLookup

Removes specified items from the lists.

Only use this method if the EntryType property value of the target Entry block is set to 21.

Parameters

String. Specifies the list item to be removed.

Examples

r = CRM.FindRecord('Company','Comp_companyid=30');
CompanyBlock = CRM.GetBlock('companyboxlong');

Sage CRM 2023 R2 - Developer Guide Page 244 of 403

NewE = CompanyBlock.GetEntry('comp_type');
NewE.RemoveLookup("customer");
CRM.AddContent(CompanyBlock.Execute(r));
Response.Write(CRM.GetPage());

Removes the Customer list item from the Type list on the Company entry screen.

CRMEntryBlock properties

l AllowBlank. Specifies whether the field can be set to a blank value.

l Caption. Allows you to change a field caption on a screen.

l CaptionPos. Sets the position of field captions relative to the field values for an entity
record.

l CreateScript. Specifies the server-side JavaScript that is run upon the creation of the
entry instance.

l DefaultType. Sets the default value for the field.

l DefaultValue. Specifies the default string value to use for the field when a new entity
record is created.

l EntryTypeSets the field type.

l Fam. Sets the caption family of the CRMEntryGroupBlock object.

l FieldName. Specifies the name by which the field is referenced.

l Hidden. Hides or shows an entry.

l JumpEntity. Hyperlinks the field in view mode to an entity summary screen.

l LookUpFamily. Sets the look-up family for an entry.

l MaxLength. Sets the maximum length of a field value (CRMEntryGroupBlock object).

l MultipleSelect. Sets if the user can select more than one item from the entry block list.

l OnChangeScript. Specifies the JavaScript to run when the field value is changed.

l ReadOnly. Specifies whether the field is read-only or writable.

l Required. Specifies whether the field is required or optional.

l Size. Specifies the maximum field size in characters.

l ValidateScript. Specifies the server-side validation JavaScript to run when the entry is
executed in save mode.

l AllowUnassigned. Changes the option name from None to Unassigned

l Restrictor. Specifies an Advanced Search Select field that restricts the search values for
the field.

Sage CRM 2023 R2 - Developer Guide Page 245 of 403

l CopyErrorsToPageErrorContent. Specifies where to display validation errors related to a
particular block on the page.

l Width. Specifies the number of columns a field should span.

l Height. Specifies the number of rows a field should span.

AllowBlank

Specifies whether the field can be set to a blank value.

Only use this property if the EntryType property value of the target Entry block is set to 21.

Values

This property can take one of the following values:

l true(default). Enables blank field values.

l false. Disables blank field values. The user must enter a value for the field.

Example

r = CRM.FindRecord('Company','Comp_companyid=44');
EG = CRM.GetBlock('companyboxlong');
NewE = EG.GetBlock('comp_revenue');
NewE.AllowBlank = false;
CRM.AddContent(EG.Execute(r));
Response.Write(CRM.GetPage());

Disables blank values for the comp_revenue field.

Caption

Allows you to change a field caption on a screen.

This property is applicable to a particular screen only. To permanently change a caption for all
screens, go to <My Profile> | Administration | Customization | <Entity> | Fields area in
Sage CRM.

Values

Value. Specifies the field caption to use. Accepts a string value.

Examples

r = CRM.FindRecord('Company','Comp_companyid=30');

Sage CRM 2023 R2 - Developer Guide Page 246 of 403

EG = CRM.GetBlock('companyboxlong');
NewE = EG.GetBlock('comp_revenue');
NewE.Caption = 'My new caption';
CRM.AddContent(EG.Execute(r));
Response.Write(CRM.GetPage());

Changes the comp_revenue field caption to My new caption.

CaptionPos

Sets the position of field captions relative to the field values for an entity record.

This property is normally used with the JavaScript Enumerator object.

Values

This property can take one of the following values:

l 1. Places the field captions above the field values.

l 2. Places the field captions to the left of the field values.

l 3. Places the field captions to the left of the field values;
field captions and values are aligned to the left.

l 6. Places the field captions to the left of the field values;
field captions are aligned to the right;
field values are aligned to the left.

Examples

r = CRM.FindRecord('Company','Comp_companyid=30');
CompBlock = CRM.GetBlock('CompanyBoxLong');
eEntries = new Enumerator(CompBlock);
while (!eEntries.atEnd())

{
 y = eEntries.item();
 y.CaptionPos = 6;
 eEntries.moveNext();
 }
CRM.AddContent(CompBlock.Execute(r));
Response.Write(CRM.GetPage());

Places the field captions to the left of the field values;
Field captions are aligned to the right, field values are aligned to the left.

CreateScript

Specifies the server-side JavaScript that is run upon the creation of the entry instance.

Sage CRM 2023 R2 - Developer Guide Page 247 of 403

Values

String. Specifies the JavaScript to run. Within the JavaScript, any of the current entry block
properties can be accessed.

Examples

r = CRM.FindRecord('Company','Comp_companyid=30');
EG = CRM.GetBlock('companyboxlong');
NewE = EG.GetBlock('comp_name');
NewE.CreateScript = "MaxLength=20";
CRM.AddContent(EG.Execute(r));
Response.Write(CRM.GetPage());

Sets the maximum length of the Entry block comp_name field instance to 20 characters.

DefaultType

Sets the default value for the field.

Use this property in conjunction with the EntryType and DefaultValue properties.

Values

This property can take one of the following values:

l 0 (iDefault_NoDefault). Specifies that no default value is used.

l 1 (iDefault_Value). Specifies to use the default value set in the DefaultValue property.

l 2 (iDefault_CurrentUserId). For fields that accept a user ID as a value, specifies to use the
ID of the current user.

l 6 (iDefault_CurrentDateTime). For DateTime fields, specifies to use the current date and
time.

l 14 (iDefault_CurrentDateTimePlus30Mins). For DateTime fields, specifies to use the current
date and time increased by 30 minutes.

Examples

R = CRM.CreateRecord('company');
EG = CRM.GetBlock('companyboxlong');
CompanyE = EG.GetEntry('comp_name');
CompanyE.DefaultType = 1;
CompanyE.DefaultValue = 'New company name';
CRM.AddContent(EG.Execute(R));
Response.Write(CRM.GetPage());

Sage CRM 2023 R2 - Developer Guide Page 248 of 403

Sets the default value of the comp_name field to the value specified in the DefaultValue
property.

DefaultValue

Specifies the default string value to use for the field when a new entity record is created.

Only use this property if you set the DefaultType property to 1.

Values

String. Any string value.

Examples

R = CRM.CreateRecord('company');
EG = CRM.GetBlock('companyboxlong');
E = EG.GetEntry('comp_name');
E.DefaultType = 1;
E.DefaultValue = 'My company name';
CRM.AddContent(EG.Execute(R));
Response.Write(CRM.GetPage());

Sets the default value of the comp_name field to My company name for each new company
record being created.

EntryType

Sets the field type.

This property is only applicable to EntryBlocks retrieved by using the GetBlock(BlockName)
method, that is, EntryBlocks not associated with specific fields.

Values

This property can take one of the following values:

l 10 (iEntryType_Text). Single-line text entry.

l 11 (iEntryType_MultiText). Multi-line text entry.

l 12 (iEntryType_EmailText). Email address.

l 13 (iEntryType_UrlText). Web URL (Uniform Resource Locator) address.

l 14 (iEntryType_VarTex). For internal use only.

l 15 (iEntryType_TextWithCBSearch). Text with check box search.

l 21 (iEntryType_Select). Selection from a combo box.

Sage CRM 2023 R2 - Developer Guide Page 249 of 403

l 22 (iEntryType_UserSelect). Selection from the User table (one user only).

l 23 (iEntryType_ChannelSelect). Selection from the Channel table (team data).

l 24 (iEntryType_UserMultiSelect). Selection from the User table (multiple users).

l 25 (iEntryType_ProductSelect). Selection from the Product table.

l 26 (iEntryType_SearchSelect). Search select. This field type is deprecated. For your custom
fields, use field type 56.

l 27 (iEntryType_TableSelect). Intelligent select.

l 28 (iEntryType_MultiSelect). Multiple selection from a combo box.

l 31 (iEntryType_Integer). Integer.

l 32 (iEntryType_Numeric). Numeric currency value.

l 41 (iEntryType_DateTime). Date and time.

l 42 (iEntryType_Date). Date only.

l 44 (iEntryType_StoredProc). Stored procedure.

l 45 (iEntryType_CheckBox). Check box.

l 46 (iEntryType_Link). Link. This field type is only used in connection with system-generated
screens that allow the entry of data into telephone number fields. For your custom fields,
use EntryType 50.

l 50 (iEntryType_Phone). Phone.

l 51 (iEntryType_Currency). Currency.

l 54 (iEntryType_FileList). For internal use only.

l 56 (iEntryType_AdvSearchSelect). Advanced Search Select.

l 57 (iEntryType_Minutes). Minutes.

l 59 (iEntryType_CurrencySelect). Currency symbols.

l 63 (iEntryType_UserGroupsSelect). User group select.

l 64 (iEntryType_SuperAdvSearchSelect). Super Advanced Search Select.

Examples

Entry = CRM.GetBlock('entry');
Entry.FieldName = "Check Box";
Entry.EntryType = 45;

Sets the field caption of the new entry to My check box, and then sets the field type to check box
(45).

Sage CRM 2023 R2 - Developer Guide Page 250 of 403

Fam

Sets the caption family of the CRMEntryGroupBlock object. This property controls the captions
that appear on each entry.

By default, the caption shown is the translation of the caption family (column names) plus the
caption code (field name). You can change the caption by setting the Fam property value and
adding a translation for the Fam value and the field name.

To view a list of column names, go to <My Profile> | Administration | Customization
| Translations.

Values

Fam. Specifies the family name to use to find the translation for the entry caption. This must be a
string value.

Examples

c = CRM.GetContextInfo('company','Comp_CompanyId');
CompanyRec = CRM.FindRecord('company','Comp_CompanyId='+c);
CompanyBlock = CRM.GetBlock("companyboxlong");
name = CompanyBlock.GetEntry('comp_name');
name.Fam = 'My caption family';
Response.Write(CompanyBlock.Execute(CompanyRec));

Sets the caption family of the comp_name entry to My caption family.

FieldName

Specifies the name by which the field is referenced.

This property is only applicable to EntryBlocks retrieved by using the GetBlock(BlockName)
method, that is, EntryBlocks not associated with specific fields.

Values

Any string value.

Example

Entry = CRM.GetBlock("entry");
Entry.FieldName = "My check box";
Entry.EntryType = 45;
CRM.AddContent(Entry.Execute());
Response.Write(CRM.GetPage());

Sage CRM 2023 R2 - Developer Guide Page 251 of 403

Sets the field caption of the new entry to My check box, and then sets the field type to check box
(45).

Hidden

Hides or shows an entry.

As a result, the entry is not displayed when the corresponding CRMEntryGroupBlock object is
executed. For example, this can be useful if you want to assign an entry to an entry group, but
don't want the users to be able to view it.

Values

This property can take one of the following values:

l true. Specifies to hide an entry.

l false. Specifies to show an entry.

Example

r = CRM.FindRecord('Company','Comp_companyid=22');
EG = CRM.GetBlock('companyboxlong');
NewE = EG.GetBlock('comp_revenue');
NewE.Hidden = true;
CRM.AddContent(EG.Execute));
Response.Write(CRM.GetPage());

Hides the company_revenue entry block.

JumpEntity

Hyperlinks the field in view mode to an entity summary screen.

The entity must be relevant to the field. The ID field of the entity must exist in the table or view
on which the summary screen is based. This property is only useful when the summary screen is
based on a view that contains fields from multiple tables.

Values

This property accepts one of the following entity names:

l Company

l Person

l Communications

l Case

Sage CRM 2023 R2 - Developer Guide Page 252 of 403

l Opportunity

l Solution

l Address

l Library

l Notes

Example

c = CRM.GetContextInfo('company','Comp_CompanyId');
CompanyRec = CRM.FindRecord('company','Comp_CompanyId='+c);
userLevel = CRM.GetContextInfo('user','User_Per_Admin');

// Start with the company entry screen.
CompanyBlock = CRM.GetBlock('companyboxlong')

// Jump from comp_name to company.
name = CompanyBlock.GetEntry('comp_name');
name.JumpEntity = 'Company';
CRM.AddContent(CompanyBlock.Execute(CompanyRec));
Response.Write(CRM.GetPage());

Hyperlinks the comp_name field to the company summary screen.

LookUpFamily

Sets the look-up family for an entry.

The look-up family defines what entries appear in the list for the entry. For example, if the look-up
family is DayName, a list of days is displayed.

This property is only applicable if the EntryType property is set to 21.

Values

LookUpFamily. Specifies the name of the family. This must be a string value.

Examples

NewE = CRM.GetBlock("entry");
NewE.EntryType = 21;
NewE.Caption = "Days of the week";
NewE.LookupFamily = "DayName";
EG.AddBlock(NewE);
CRM.AddContent(EG.Execute());
Response.Write(CRM.GetPage());

Creates a new selection entry group that uses the DayName family for selection items.

Sage CRM 2023 R2 - Developer Guide Page 253 of 403

MaxLength

Sets the maximum length of a field value (CRMEntryGroupBlock object). This doesn't change the
size of the entry box. To change the entry box size, use the Size parameter.

Values

MaxLength. Specifies the maximum length of value in characters. This must be an integer value.

Examples

r = CRM.FindRecord('Company','Comp_companyid=22');
EG = CRM.GetBlock('companyboxlong');
NewE = EG.GetBlock('comp_name');
NewE.MaxLength = 5;
CRM.AddContent(EG.Execute(r));
Response.Write(CRM.GetPage());

Sets the maximum value of comp_name to 5 characters.

MultipleSelect

Sets if the user can select more than one item from the entry block list.

You must save the possible entries in a relevant location such as a link table.

This property is only applicable if the EntryType property is set to 21.

Values

This property can take one of the following values:

l true. Specifies that the user can select multiple entries.
If you set this value, make sure that the value set in the Size property allows the block to
accommodate all possible entries.

l false. Specifies that the user can only select one entry.

Example

b = CRM.GetBlock('companyboxlong');
e = b.GetBlock('comp_source');
e.MultipleSelect = true;
e.Size = 10;
r = CRM.FindRecord('company','comp_companyid=892');
CRM.AddContent(b.Execute(r));
Response.Write(CRM.GetPage());

Sage CRM 2023 R2 - Developer Guide Page 254 of 403

Sets the comp_source entry block of the companyboxlong entry group to MultipleSelect; also sets
the entry size to 10.

OnChangeScript

Specifies the JavaScript to run when the field value is changed.

This property is only applicable if the ReadOnly property is set to false.

Values

JavaScript to run. This must be a string value.

Examples

ThisPersonId = CRM.GetContextInfo('Person','Pers_PersonId');
ThisPersonRecord = CRM.FindRecord('Person','Pers_PersonId=17');
PersonBlock = CRM.GetBlock('PersonBoxLong');
FirstName = PersonBlock.GetEntry('Pers_FirstName');
FirstName.OnChangeScript = "alert('User's first name has changed')";
CRM.AddContent(PersonBlock.Execute(ThisPersonRecord));
Response.Write(CRM.GetPage());

Displays an alert when a user's first name has changed.

ReadOnly

Specifies whether the field is read-only or writable.

Values

This property can take one of the following values:

l true. Specifies that the field is read-only.

l false. Specifies that the field is writable.

Example

Record=CRM.FindRecord('person', 'pers_personid=17');
PersonBlock = CRM.GetBlock('PersonBoxLong');
Title = PersonBlock.GetEntry('pers_titlecode');
Title.ReadOnly = 'true';
CRM.AddContent(PersonBlock.Execute(Record));
Response.Write(CRM.GetPage());

Makes the pers_titlecode field read-only.

Sage CRM 2023 R2 - Developer Guide Page 255 of 403

Required

Specifies whether the field is required or optional.

Values

This property can take one of the following values:

l true. Specifies that the field is required and must be populated with a value.

l false. Specifies that the field is optional.

Examples

Block = CRM.GetBlock('PersonBoxShort');
Title = Block.GetEntry('pers_title');
Title.Required = true;
CRM.AddContent(Block.Execute());
Response.Write(CRM.GetPage());

Sets the pers_title field as a required field.

Size

Specifies the maximum field size in characters. This is the field size displayed on the screen.

Values

Integer

Examples

ThisPersonId = CRM.GetContextInfo('Person','Pers_PersonId');
ThisPersonRecord = CRM.FindRecord('Person','Pers_Personid='+ThisPersonId);
PersonBlock = CRM.GetBlock('PersonBoxLong');
FirstName = PersonBlock.GetEntry('Pers_FirstName');
FirstName.Size = 40;
CRM.AddContent(PersonBlock.Execute(ThisPersonRecord));
Response.Write(CRM.GetPage());

Retrieves the pers_firstname field from the PersonBoxLong screen, and then sets the maximum size
of the field to 40 characters.

ValidateScript

Specifies the server-side validation JavaScript to run when the entry is executed in save mode.

Sage CRM 2023 R2 - Developer Guide Page 256 of 403

The script sets the Valid variable to one of these values:

l true. Indicates that validation has succeeded.

l false. Indicates that validation has failed. In this case, the screen remains in edit mode
and displays an error message. An orange question mark is displayed next to the field
whose validation has failed.

Values

JavaScript to run. This must be a string value. You can set the ErrorStr variable in your script to
display a custom error message.

Examples

r = CRM.FindRecord('Company','Comp_companyid=30');
EG = CRM.GetBlock('companyboxlong');
NewE = EG.GetBlock('comp_name');
NewE.ValidateScript = "Valid = (comp_name.value != '');
if (!Valid) ErrorStr = 'Please correct the highlighted entries';";
CRM.AddContent(EG.Execute(r));
Response.Write(CRM.GetPage());

The script in this example sets the Valid variable to true if the comp_name field is not empty
(comp_name.value != '').
If the comp_name field is empty, the following error message is displayed: "Please correct the
highlighted entries".

AllowUnassigned

Changes the option name from None to Unassigned.

This property is only applicable to entry blocks whose entry type is TableSelect (lists to select
users). Option name depends on the combination of the AllowUnassigned and AllowBlank values,
as follows:

AllowUnassigned value AllowBlank value Option name

false false N/A

true false Unassigned

false true None

true true None

Sage CRM 2023 R2 - Developer Guide Page 257 of 403

Values

This property can take one of the following values:

l true. Sets the option name to Unassigned.

l false.Does not allow the Unassigned option.

Examples

EntryGroup = CRM.GetBlock('companyboxlong');
Record = CRM.FindRecord('Company','Comp_CompanyId=30');
UserSelect = EntryGroup.GetBlock('comp_primaryuserid');
UserSelect.AllowUnassigned = true;
UserSelect.AllowBlank = false;
CRM.AddContent(EntryGroup.Execute(Record));
Response.Write(CRM.GetPage());

Changes the option caption from None to Unassigned.When a user clicks Change, the Account
Manager list includes the Unassigned option instead of None.

Restrictor

Specifies an Advanced Search Select field that restricts the search values for the field.

Values

Field name in the form of a WideString value.

Read: Get_Restrictor

Write: Set_Restrictor

Examples

Restrictor = "cmli_comm_companyid";

Adds a new Advanced Search Select field to restrict search results based on an existing Advanced
Search Select field. The existing field searches for companies; when a company is selected for the
existing field the new Advanced Search field searches for records that belong to that company.

CopyErrorsToPageErrorContent

Specifies where to display validation errors related to a particular block on the page.

Sage CRM 2023 R2 - Developer Guide Page 258 of 403

Values

This property can take one of the following values:

l true. Specifies to show validation errors at the top of the page.

l false. Specifies to show validation errors next to the related block on the page.

Examples

CompanyEntryGroup = CRM.GetBlock("CompanyBoxLong");
CompanyEntryGroup.Title = "Company";
AddressEntryGroup = CRM.GetBlock("AddressBoxLong");
AddressEntryGroup.Title = "Address";

// Set Valid = false so that this field will always fail validation no matter what is entered.
var address1field = AddressEntryGroup.GetEntry("addr_address1");
address1field.ValidateScript = "Valid = false;
ErrorStr = 'Value not correct'";

// Set CopyErrorsToPageErrorContent = true for both of the blocks so that the error message
// will appear at the top of the page.
CompanyEntryGroup.CopyErrorsToPageErrorContent = true;
AddressEntryGroup.CopyErrorsToPageErrorContent = true;
container=CRM.GetBlock("container");
container.AddBlock(CompanyEntryGroup);
container.AddBlock(AddressEntryGroup);

Creates two entry blocks, one of which fails validation. The corresponding validation errors are
displayed at the top of the page.

Width

Specifies the number of columns a field should span.

Examples

var myBlock = CRM.GetBlock("CompanyBoxShort");
myEntryBlock = myBlock.GetEntry("comp_type");
myEntryBlock.Height = "2";
myEntryBlock.Width = "4";

Sets the width of the comp_type field to four columns. This code generates HTML similar to the
following:

<td colspan="4" valign="TOP" rowspan="2">

Type:

Sage CRM 2023 R2 - Developer Guide Page 259 of 403

Prospect

</td>

Height

Specifies the number of rows a field should span.

Examples

var myBlock = CRM.GetBlock("CompanyBoxShort");
myEntryBlock = myBlock.GetEntry("comp_type");
myEntryBlock.Height = "2";
myEntryBlock.Width = "4";

Sets the height of the comp_type field to two rows. This code generates HTML similar to the
following:

<td colspan="4" valign="TOP" rowspan="2">

Type:

Prospect

</td>

Sage CRM 2023 R2 - Developer Guide Page 260 of 403

CRMEntryGroupBlock object
The CRMEntryGroupBlock object corresponds to a screen in CRM. Use CRMEntryGroupBlock
methods to create screens and control custom data entry and editing. You can generate many
types of entry group, such as a Company search box, a Person entry box, and a Case detail box.

This block also contains the following standard CRM buttons:

l Change or Save. Displayed as Change when the screen is in View mode and Save when the
screen is in Edit mode. This button is shown by default.

l Delete or Confirm Delete. Displayed as Delete when the screen is in View mode and
Confirm Delete when the screen is in Confirm Delete mode. This button is not shown by
default.

l Continue or Cancel. Displayed as Continue when the screen is in View mode and Cancel
when the screen is in Edit or Confirm Delete mode. This button is not shown by default.

In this section:

l CRMEntryGroupBlock methods

l CRMEntryGroupBlock properties

CRMEntryGroupBlock methods

l AddEntry(EntryName, Position, Newline). Enables new entries to be added dynamically
to EntryGroups.

l DeleteEntry(EntryName). Deletes the specified entry from the EntryGroup.

l GetEntry. Returns a reference to the specified entry.

AddEntry(EntryName, Position, Newline)

Enables new entries to be added dynamically to EntryGroups. The changes only apply to the
ASP page in which they are used.

Parameters

l EntryName (required). Specifies the new entry to be added. The entry can be passed in as
the field name or an existing EntryBlock. In any case, the field must be relevant to the
existing EntryGroup block. It must exist in the table on which the EntryGroup block is
based.

l Position (optional). Specifies the position in the group at which to add the entry.
Possible values:

Sage CRM 2023 R2 - Developer Guide Page 261 of 403

l <a positive integer>. Specifies the index of the position at which to add the entry.

l 0. Adds the entry to the first position in the group.

l -1 (default). Adds the entry to the last position in the group.
l NewLine (optional). Specifies whether to show the entry on a new line.
Possible values:

l true (default). Shows the entry on a new line.

l false. Shows the entry on the same line.

Return value

CRMEntryBlock object

Examples

var EntryGroup;
EntryGroup = CRM.GetBlock("personboxlong");
EntryGroup.AddEntry("pers_faxnumber", 0, false);
EntryGroup.AddEntry("pers_phonenumber", 0, false);
CRM.AddContent(EntryGroup.Execute());
Response.Write(CRM.GetPage());

Adds the pers_faxnumber and pers_phonenumber fields to the start of the entry group.

DeleteEntry(EntryName)

Deletes the specified entry from the EntryGroup.

Parameters

EntryName. Specifies the name of the field to be deleted.

Return value

None

Examples

var r;
r = CRM.FindRecord('Company','Comp_CompanyId=30');
MyC = CRM.GetBlock('CompanyBoxLong');
userLevel = CRM.GetContextInfo('user','User_Per_Admin');
if (userLevel < 3)

{
 MyC.DeleteEntry('comp_revenue');

Sage CRM 2023 R2 - Developer Guide Page 262 of 403

 }
CRM.AddContent(MyC.Execute(r));Response.Write(CRM.GetPage());

Deletes the comp_revenue field from CompanyBoxLong for non-administrators.

GetEntry

Returns the specified entry.

Parameters

EntryName. Specifies the entry name to be returned from the EntryGroup.

Return value

One of the following:

l CRMEntryBlock object if the specified entry exists.

l Nil object if the specified entry does not exist.

Examples

ThisPersonId = CRM.GetContextInfo('Person','Pers_PersonId');
ThisPersonRecord = CRM.FindRecord('Person','Pers_Personid='+ThisPersonId);
PersonBlock = CRM.GetBlock('PersonBoxShort');
FirstName = PersonBlock.GetEntry('Pers_FirstName');
FirstName.ReadOnly = true;
CRM.AddContent(PersonBlock.Execute(ThisPersonRecord));
Response.Write(CRM.GetPage());

Retrieves the pers_fistname entry from the PersonBoxShort EntryGroup and sets the entry to read-
only.

CRMEntryGroupBlock properties

ShowSavedSearch. When the block is executed, shows or hides the Saved Search functionality as
part of the entry group.

ShowSavedSearch

When the block is executed, shows or hides the Saved Search functionality as part of the entry
group.

This property is only applicable to EntryGroup blocks whose screen type is Search block and that
have an associated List.

Sage CRM 2023 R2 - Developer Guide Page 263 of 403

Values

l false (default). Hides saved searches.

l true. Shows a list of saved searches for the entity and allows the user to create and edit
the saved searches.

Examples

searchEntry = CRM.GetBlock("ProjectsSearchBox");
searchEntry.ShowSavedSearch=true;
searchList = CRM.GetBlock("ProjectsGrid");
searchContainer = CRM.GetBlock("container");
searchContainer.ButtonTitle = "Search";
searchContainer.ButtonImage = "Search.gif";
searchContainer.AddBlock(searchEntry);
if(CRM.Mode != 6)searchContainer.AddBlock(searchList);
searchContainer.AddButton(CRM.Button("Clear",
"clear.gif","javascript:document.EntryForm.em.value = '6';document.EntryForm.submit();
"));
searchList.ArgObj = searchEntry;
CRM.AddContent(searchContainer.Execute(searchEntry));
Response.Write(CRM.GetPage());

Sage CRM 2023 R2 - Developer Guide Page 264 of 403

CRMFileBlock object
The CRMFileBlock object provides access to external files that are not part of the system. It allows
these files to appear as if they are part of the system and to be called using ASP in the same way
as any other Sage CRM page. You must format the appearance of the files in HTML.

Syntax to use this object:

var afile;
afile = CRM.GetBlock('file');
afile.FileName = 'general.htm';
afile.Translate = false;
afile.ProperCase = false;
afile.DirectoryPath = 'C:\\<Folder>\\<Subfolder>\\';
CRM.AddContent(afile.Execute());
Response.Write(CRM.GetPage());

You can use the Translate property which allows you to dynamically choose a file based on the
user's language code, or the ProperCase property which allows you to display the text with initial
caps. These simple ASP statements include the named file on the page. If the author sets translate
to true, the file name included is changed from filename to filename_US or filename_DE,
depending on the user's language specified in Sage CRM. If the file name extension is not
specified, .txt is used by default. This means you must specify .htm and format the text.

l CRMFileBlock properties

CRMFileBlock properties

l DirectoryPath. Specifies the folder that stores the files.

l FileName. Specifies the name of the file to use.

l ProperCase. Applies initial capitals formatting to the text: the first letter of every word
begins with a capital letter.

l Translate. Specifies to use files containing text in the user's language.

DirectoryPath

Specifies the folder that stores the files. If you omit this parameter, the following path is used by
default:
<Sage CRM installation folder>\WWWRoot\Reports

By default, the Sage CRM installation folder is

%ProgramFiles(x86)%\Sage\CRM\CRM

Sage CRM 2023 R2 - Developer Guide Page 265 of 403

Values

WideString. Specifies the path to the folder.

Examples

var afile;
afile = CRM.GetBlock('file');
afile.FileName = 'Results.htm';
afile.DirectoryPath = 'c:\\MyFolder\\Storage';

FileName

Specifies the name of the file to use.

Values

WideString. Specifies the file name.

Examples

var afile;
afile = CRM.GetBlock('file');
afile.FileName = 'Results.htm';

ProperCase

Applies initial capitals formatting to the text: the first letter of every word begins with a capital
letter.

Values

This property can take one of the following values:

l true. Formats the text using initial capitals.

l false. Keeps the existing formatting of the text.

Example

var afile;
afile = CRM.GetBlock('file');
afile.FileName = 'general.htm';

Sage CRM 2023 R2 - Developer Guide Page 266 of 403

afile.ProperCase = true;
CRM.AddContent(afile.Execute());
Response.Write(CRM.GetPage());

Formats text in the general.htm file using initial capitals.

Translate

Specifies to use files containing text in the user's language. Names of these files have the
following format:

<file name>_<language>.<extension>

where <language> is the language set for the user in Sage CRM.

Values

This parameter can take one of the following values:

l true. Searches for files in the user's language.

l false. Searches for files that do not contain the <language> suffix.

Examples

var afile;
afile = CRM.GetBlock('file');
afile.FileName = 'Results.htm';
afile.Translate = true;

Specifies to use the file containing text in the user's language.

For example, if the user's language in Sage CRM is set to US English, this example looks for the
Results_US.htm file.

Sage CRM 2023 R2 - Developer Guide Page 267 of 403

CRMGraphicBlock object
The CRMGraphicsBlock object is a child of the CRM block and parent of the PipeLineGraphic,
OrgChartGraphic, and ChartGraphicBlock objects.

Use CRMGraphicsBlock to display images through an ASP page. Graphics blocks are more powerful
than standard static images because you can use variables to create them. The variables may
represent live data from a database or incorporate details of the current user such as their
privileges or settings. A graphic created by CRMGraphicsBlock is recreated every time it's
requested, so if it's created using variables, the graphic is based on real time data.

The option to load previously created images means that backgrounds can be employed or other
images can be altered to represent a new situation.

The graphics can consist of basic details, such as text and lines, or more complex graphics
employing various effects such as gradients and rotation.

Syntax to initiate this block:

graphic=CRM.GetBlock('graphic');

l CRMGraphicBlock methods

l CRMGraphicBlock properties

CRMGraphicBlock methods

l Arc(X1, Y1, X2, Y2, X3, Y3, X4, Y4). Draws an elliptically curved line.

l Animation(Mode, Value). Sets animation parameters.

l Brush(Mode, Value). Changes the color and pattern used when drawing the background or
filling in graphical shapes.

l Chord(X1,Y1,X2,Y2,X3,Y3,X4,Y4). Creates a shape that is defined by an arc and a line that
joins the endpoints of the arc.

l Effect(Mode, Value). Applies effects.

l Ellipse(X1,Y1,X2,Y2). Draws a circle or ellipse.

l FlipHoriz(). Flips the image horizontally.

l FlipVert(). Flips the image vertically.

l Font(Mode, Value). Changes the current font.

l FontColor(Color). Changes the color of the current font.

l FontSize(Size). Changes the size of the current font.

Sage CRM 2023 R2 - Developer Guide Page 268 of 403

l GradientFill(StartColor, EndColor, Direction, Colors). Fills the graphic with a gradient
of colors.

l GrayScale(). Converts an image to grayscale.

l LoadBMP(Filename). Loads a specified bitmap file as the new image.

l LoadImage(text). Loads image from the specified file.

l LoadJPG(Filename). Loads an image from the specified JPEG file.

l LineTo(X,Y). Draws a line from the initial pen position up to the points specified in the
method parameters.

l Monochrome(). Converts an image to monochrome (black and white).

l MoveTo(X,Y). Moves the pen to the specified coordinates.

l Pen(Mode, Value). Sets the appearance of a line drawn with the current pen.

l PenColor(Color). Sets the color for the current pen.

l PenWidth(Width). Sets the line width for the current pen.

l PieShape(X1,Y1,X2,Y2,X3,Y3,X4,Y4). Draws a pie-shaped wedge on the image.

l Rectangle(X1,Y1,X2,Y2). Draws a rectangle.

l Resize(Width, Height). Sets the dimensions of the image.

l Rotate(Number). Rotates an image.

l RoundRect(X1,Y1,X2,Y2,X3,Y3). Draws a rounded rectangle.

l SaveAsJPG(text). Saves the current image as a .jpeg file with 16-bit color depth.

l TextOut(X, Y, Text, transparent=True/False). Writes text on an image.

l TextOutCenter(Left, Top, Right, Bottom, Text, Transparent, Ellipse). Writes text on
an image and centers it in a rectangle area defined by the parameters.

Arc(X1, Y1, X2, Y2, X3, Y3, X4, Y4)

Draws an elliptically curved line.

The arc traverses the perimeter of an ellipse that is bound by the points (X1,Y1) and (X2,Y2). The arc
is drawn following the perimeter of the ellipse, counterclockwise, from the starting point to the
ending point. The starting point is defined by the intersection of the ellipse and a line defined by
the center of the ellipse and (X3,Y3). The ending point is defined by the intersection of the ellipse
and a line defined by the center of the ellipse and (X4, Y4).

Parameters

l X1. Integer.

l Y1. Integer.

l X2. Integer.

Sage CRM 2023 R2 - Developer Guide Page 269 of 403

l Y2. Integer.

l X3. Integer.

l Y3. Integer.

l X4. Integer.

l Y4. Integer.

Example

var graphic;
graphic = CRM.GetBlock("graphic");
graphic.ImageWidth = 70;
graphic.ImageHeight = 50;
graphic.Effect('ChangeColor','White,Red');
graphic.Arc(10,10,25,25,30,30,40,40);
CRM.AddContent(graphic.execute());
Response.Write(CRM.GetPage());

Animation(Mode, Value)

Sets animation parameters.

The Graphics Block supports animation. Frames contained in an animation can be shown at varying
intervals using the Delay mode. Using Add, the current state of the image is saved as a frame to be
shown after the specified delay. The whole animation can be looped for a definite or indefinite
number of times. This animation technique can also be used for charts. The delay is specified
where 100=1 second and indefinite loops can be obtained by setting the Loop value to 0.

Parameters

l Mode. WideString.

l Value. Integer.

Example

Graphic.Animation('Delay','100');
Graphic.Animation('Loop','0');
Graphic.Animation('Add','100');

Brush(Mode, Value)

Changes the color and pattern used when drawing the background or filling in graphical shapes.
You can select one of predefined patterns by using the Style mode or load a pattern from an image
by using the Load mode.

Sage CRM 2023 R2 - Developer Guide Page 270 of 403

Parameters

l Mode. Specifies the mode to use. This parameter accepts a WideString value.

l Value. Specifies the value for the selected mode. This parameter accepts a WideString
value.

Examples

Graphic.Brush('Load','c:\\MyImages\\SoapBubbles.bmp');
Graphic.Brush('Color','Blue');
Graphic.Brush('Fill','10,10,50,50');
Graphic.Brush('Style','cross');

Chord(X1,Y1,X2,Y2,X3,Y3,X4,Y4)

Creates a shape that is defined by an arc and a line that joins the endpoints of the arc.

The chord consists of a portion of an ellipse that is bound by the points (X1,Y1) and (X2,Y2). The
ellipse is bisected by a line that runs between the points (X3,Y3) and (X4,Y4). The perimeter of the
chord runs counter clockwise from (X3, Y3), counterclockwise along the ellipse to (X4,Y4), and
straight back to (X3,Y3). If (X3,Y3) and (X4,Y4) are not on the surface of the ellipse, the
corresponding corners on the chord are the closest points on the perimeter that intersect the line.

Parameters

l X1. Integer.

l Y1. Integer.

l X2. Integer.

l Y2. Integer.

l X3. Integer.

l Y3. Integer.

l X4. Integer.

l Y4. Integer.

Examples

Graphic.Chord(10,10,25,25,30,30,40,40);

Sage CRM 2023 R2 - Developer Guide Page 271 of 403

Effect(Mode, Value)

Applies effects.

Parameters

l Mode. Specifies the name of the effect to apply.

l Value. Specifies parameters for the selected effect.

Examples

Graphic.Effect('Zoom','200');
Graphic.Effect('Transparent','True');
Graphic.Effect('Dither','Floyd');
Graphic.Effect('Merge','c:\\winnt\\winnt.bmp, White,0,0');
Graphic.Effect('DisplayErrors','false');
Graphic.Effect('Clear','');
Graphic.Effect('ChangeColor','White,Red');

Ellipse(X1,Y1,X2,Y2)

Draws a circle or ellipse.

Specify the bounding rectangle by giving the top left point at pixel coordinates (X1, Y1) and the
bottom right point at (X2, Y2). If the bounding rectangle is a square, a circle is drawn. The ellipse
is drawn using the current pen width and color.

Parameters

l X1. Integer.

l Y1. Integer.

l X2. Integer.

l Y2. Integer.

Examples

Graphic = CRM.GetBlock("graphic");
Graphic.ImageWidth = 70;
Graphic.ImageHeight = 50;
Graphic.Effect('ChangeColor','White,Red');
Graphic.Ellipse(10,10,50,50);
CRM.AddContent(Graphic.execute());
Response.Write(CRM.GetPage());

Sage CRM 2023 R2 - Developer Guide Page 272 of 403

FlipHoriz()

Flips the image horizontally.

Parameters

None

Examples

Graphic.FlipHoriz();

FlipVert()

Flips the image vertically.

Parameters

None

Example

Graphic.FlipVert();

Font(Mode, Value)

Changes the current font. For best results, use TrueType fonts. To apply changes, use the TextOut
(X, Y, Text, transparent=True/False) method.

Parameters

l Mode. Specifies changes to apply to the font. This parameter can take one of the following
WideString values:

l Name. Changes the current font. Use the Value parameter to specify the name of
the font to use.

l Size. Changes the font size. Use the Value parameter to specify the font size.

l Color. Changes the font color. Use the Value parameter to specify the font color.

Sage CRM 2023 R2 - Developer Guide Page 273 of 403

l Bold. Toggles between bold and normal font. Use the Value parameter to apply bold
(true) or normal (false) font.

l Italic. Toggles between italic and normal font. Use the Value parameter to apply
italic (true) or normal (false) font.

l Underline. Toggles between underlined and normal font. Use the Value parameter
to apply underlined (true) or normal (false) font.

l Strikeout. Adds or removes a line through the middle of characters. Use the Value
parameter to add a line (true) or remove the line (false).

l Rotate. Rotates the font. This parameter may not work for some fonts.
l Value. Specifies the value for the Mode parameter. This parameter accepts a WideString
value.

Examples

Graphic.Font('Name','Times New Roman');
Graphic.Font('Color','Blue');
Graphic.Font('Size','24');
Graphic.Font('Bold','True');
Graphic.Font('StrikeOut','True');
Graphic.Font('Rotate','45');
<%
Graphic = CRM.GetBlock("graphic");
Graphic.LoadImage("go.gif");
Graphic.ImageWidth = 130;
Graphic.ImageHeight = 50;
Graphic.vSpace = 30;
Graphic.hSpace = 30;
Graphic.Border = 3;
Graphic.Font('Name','Times New Roman');
Graphic.Font('Color','Blue');
Graphic.Font('Size','24');
Graphic.Font('Bold','True');
Graphic.Font('StrikeOut','True');
CRM.AddContent(Graphic.execute());
Response.Write(CRM.GetPage());
%>

FontColor(Color)

Changes the color of the current font. This method is identical to Font(Color, Value).

Parameters

Color. Specifies the name of the font color to use. This parameter accepts a WideString value.

Sage CRM 2023 R2 - Developer Guide Page 274 of 403

Example

Graphic.FontColor('blue');

Changes the font color to blue.

FontSize(Size)

Changes the size of the current font. This method is identical to Font(Size, Value).

Parameters

Size. Specifies the font size (in pixels) to use.

Example

Graphic.FontSize(24);

Changes the font size to 24 pixels.

GradientFill(StartColor, EndColor, Direction, Colors)

Fills the graphic with a gradient of colors.

Parameters

l StartColor. Specifies the initial color of the gradient. This parameter accepts a WideString
value.

l EndColor. Specifies the end color of the gradient. This parameter accepts a WideString
value.

l Direction. Specifies the direction in which the gradient color changes. This parameter can
take one of the following WideString values:

l TopToBottom

l BottomToTop

l LeftToRight

l RightToLeft
l Colors. Specifies color depth (or bit depth) of the gradient. This parameter can take an
integer value. The default value is 64 (64-bit). Gradients usually look better in 24-bit JPEG
images, as the colors that can be used with GIFs are more limiting.

Sage CRM 2023 R2 - Developer Guide Page 275 of 403

Examples

Graphic.GradientFill('Yellow','White','LeftToRight');

Graphic.GradientFill('Blue','White','TopToBottom',256);

GrayScale()

Converts an image to grayscale. This method doesn't reduce the number of colors in use.

Parameters

None

Examples

Graphic.Grayscale();

LoadBMP(Filename)

Loads a specified bitmap file as the new image.

To change the image dimensions, use the ImageWidth and ImageHeight properties.

Parameters

Filename. Specifies path to the image in the form of absolute server address. This parameter
accepts a WideString value.

Examples

Graphic = CRM.GetBlock('graphic');
Graphic.LoadBMP("D:\\Program Files\\Sage\\CRM\\CRM\\WWWRoot\\Img\\plain.bmp");
CRM.AddContent(Graphic.Execute());
Response.Write(CRM.GetPage());

Loads a bitmap file named plain.bmp.

Sage CRM 2023 R2 - Developer Guide Page 276 of 403

LoadImage(text)

Loads image from the specified file.

To change the image dimensions, use the ImageWidth and ImageHeight properties.

You can load images in the following formats:

l .bmp

l .ico

l .gif

l .jpg

l .wmf

l .emf

Parameters

Text. Specifies the file name and path.

If the file is stored in the <Sage CRM installation folder>\WWWRoot\Img folder, you only need
to specify the name of the file. If the file is stored in any other location, specify the full path to
the file.

This parameter accepts a WideString value.

Examples

Graphic.LoadImage('Image.gif');

Loads image from a file named Image.gif located in the following folder on the Sage CRM server:
<Sage CRM installation folder>\WWWRoot\Img

Graphic.LoadImage('c:\\MyImages\\Image.gif');

Loads image from a file named Image.gif located in the C:\MyImages folder on the Sage CRM
server.

LoadJPG(Filename)

Loads an image from the specified JPEG file.

To change the image dimensions, use the ImageWidth and ImageHeight properties.

Sage CRM 2023 R2 - Developer Guide Page 277 of 403

Parameters

Filename. Specifies the name and path of the file to load.

Examples

Graphic = CRM.GetBlock('graphic');
Graphic.LoadJPG("C:\\Program Files\\Sage\\CRM\\CRM58\\WWWRoot\\Img\\Image.jpg");
CRM.AddContent(Graphic.Execute());
Response.Write(CRM.GetPage());

Displays an image stored in the Image.jpg file.

LineTo(X,Y)

Draws a line from the current pen position up to the points specified in the method parameters.

The points specified in the parameters are not included in the line. Changes the pen position to
the specified points. The line is drawn using the current pen and color.

To set the initial pen position for drawing a line, use the MoveTo(X,Y).

Parameters

Use the below parameters to specify the coordinates for drawing a line.

l X. Integer.

l Y. Integer.

Examples

Graphic.LineTo(50,50);

Monochrome()

Converts an image to monochrome (black and white).

This method makes irreversible changes to the image. To return to color, you need to redraw the
image.

Parameters

Boolean. Specifies whether to convert the image to monochrome. This parameter can take one of
the following values:

Sage CRM 2023 R2 - Developer Guide Page 278 of 403

l true. Specifies to convert the image to monochrome.

l false. Specifies to keep the current image color.

Examples

Graphic.Monochrome(true);

Converts the image to monochrome.

MoveTo(X,Y)

Moves the pen to the specified coordinates.

Use this method to set the initial pen position before calling the LineTo(X,Y) method.

Parameters

Use the below parameters to specify the pen coordinates:

l X. Integer.

l Y. Integer.

Examples

Graphic.MoveTo(50,50);

Pen(Mode, Value)

Sets the appearance of a line drawn with the current pen.

Affects any line-drawing actions performed after invoking this method.

Parameters

l Mode. Specifies the pen style to use. This parameter can take one of the following
WideString values:

l Style. Specifies the line style to use, for example, DashDot.

l Color. Specifies the color to use.

l Width. Specifies the line width in pixels.
l Value. Specifies the value for the Mode parameter. This parameter accepts a WideString
value.

Sage CRM 2023 R2 - Developer Guide Page 279 of 403

Examples

Graphic.Pen('Style','DashDot');
Graphic.Pen('Color','Blue');
Graphic.Pen('Width','3');

PenColor(Color)

Sets the color for the current pen.

This method is identical to Pen(Color, Value)

Parameters

Color. Specifies the color to use. This parameter accepts a WideString value.

Examples

Graphic.PenColor('green');

PenWidth(Width)

Sets the line width for the current pen.

This method is identical to Pen(Width, Value).

Parameters

Width. Specifies the line width in pixels.

Example

Example Graphic.PenWidth('3');

PieShape(X1,Y1,X2,Y2,X3,Y3,X4,Y4)

Draws a pie-shaped wedge on the image.

The wedge is defined by the ellipse bound by the rectangle determined by the points (X1, Y1) and
(X2, Y2). The section drawn is determined by two lines radiating from the center of the ellipse
through the points (X3, Y3) and (X4, Y4).

Sage CRM 2023 R2 - Developer Guide Page 280 of 403

Parameters

l X1. Integer.

l Y1. Integer.

l X2. Integer.

l Y2. Integer.

l X3. Integer.

l Y3. Integer.

l X4. Integer.

l Y4. Integer.

Examples

Graphic.PieShape(10,10,25,25,30,30,40,40);

Rectangle(X1,Y1,X2,Y2)

Draws a rectangle.

Specify the rectangle by giving the top left point at pixel coordinates (X1, Y1) and the bottom right
point at (X2, Y2). The rectangle is drawn using the current pen width and color.

Parameters

l X1. Integer.

l Y1. Integer.

l X2. Integer.

l Y2. Integer.

Examples

Graphic.Rectangle(10,10,100,100);

Resize(Width, Height)

Sets the dimensions of the image.

Sage CRM 2023 R2 - Developer Guide Page 281 of 403

The image is scaled to the specified size (which doesn't happen if you use the ImageHeight and
ImageWidth properties). Do not set the ImageHeight and ImageWidth properties in the same
block, as they override the value set by this method.

Parameters

l Width. Integer.

l Height. Integer.

Examples

Graphic.Resize(150,100);

Rotate(Number)

Rotates an image.

The corners of a rotated image are colored in the current brush color.

Parameters

Number. Specifies the number of degrees by which to rotate the image. This parameter accepts an
integer value.

Examples

Graphic.Rotate(90);

RoundRect(X1,Y1,X2,Y2,X3,Y3)

Draws a rounded rectangle.

The rectangle has edges defined by the points (X1,Y1), (X2,Y1), (X2,Y2), (X1,Y2), but its corners are
rounded. The curve of the rounded corners matches the curvature of an ellipse with width X3 and
height Y3. The rounded rectangle is drawn using the current pen width and color.

Parameters

l X1. Integer.

l Y1. Integer.

l X2. Integer.

Sage CRM 2023 R2 - Developer Guide Page 282 of 403

l Y2. Integer.

l X3. Integer.

l Y3. Integer.

Examples

Graphic.RoundRect(10,10,12,12,15,15);

SaveAsJPG(text)

Saves the current image as a .jpeg file with 16-bit color depth.

Parameters

Text. Specifies path to the file. This parameter accepts a WideString value.

Examples

Graphic.SaveAsJPG('c:\\cancel.jpg');

TextOut(X, Y, Text, transparent=True/False)

Writes text on an image.

Optionally, you can make the text transparent. By default, the text creates a blank rectangle where
it is placed. It's written in co-ordinates specified in (X,Y) and is written in the current font color
and size.

Parameters

l X, Y. Specify coordinates for writing text. These parameters accept integer values.

l Text. Specifies the text to write. Accepts a WideString value.

l Transparent. Specifies whether the text is transparent. This parameter accepts one of the
following values:

l true. Makes the text transparent.

l false. Makes the text non-transparent.

Sage CRM 2023 R2 - Developer Guide Page 283 of 403

Examples

Graphic.TextOut(10,10,'My text',true);

TextOutCenter(Left, Top, Right, Bottom, Text, Transparent, Ellipse)

Writes text on an image and centers it in a rectangle area defined by the parameters.

Parameters

l Left, Top, Right, Bottom. Integer.

l Text. Specifies the text to write. Accepts a WideString value.

l Transparent. Specifies whether the text is transparent. This parameter can take one of the
following values:

l true. Makes the text transparent.

l false. Makes the text non-transparent.
l Ellipse. Adds an ellipsis (...) at the end of the text if it doesn't fit into the rectangle area
and gets truncated. This parameter can take one of the following values:

l true. Adds an ellipsis if the text gets truncated.

l false. Doesn't add an ellipsis if the text gets truncated.

Example

Graphic.TextOutCenter(10,10,100,30,'My text',true,true);

CRMGraphicBlock properties

l Border. Sets the thickness of the border around the image.

l Description. Sets the description of the image.

l hSpace. Adds a horizontal space above and below the image.

l ImageHeight. Sets the height of the box in which the image is loaded.

l ImageWidth. Sets the width of the box in which the image is loaded.

l SaveAsGifs. Saves an image as a .gif or .jpeg file.

l vSpace. Adds a vertical space to the left and to the right of the image.

Sage CRM 2023 R2 - Developer Guide Page 284 of 403

Border

Sets the thickness of the border around the image.

Values

Integer. Specifies the border thickness. The default value is 0.

Examples

Graphic.Border = 1;

Description

Sets the description of the image.

The specified description is displayed in place of the image if images are disabled in the user's
browser.

Values

Text. Specifies the image description. This must be a WideString value.

Examples

Graphic.Description = "My image description";

hSpace

Adds a horizontal space above and below the image.

Values

Integer. Specifies the size of the horizontal space to add. By default, this value is 0.

Examples

Graphic.hSpace = 10;

Sage CRM 2023 R2 - Developer Guide Page 285 of 403

ImageHeight

Sets the height of the box in which the image is loaded.

Values

Integer. Specifies the box height in pixels.

Example

Graphic.ImageHeight = 200;

ImageWidth

Sets the width of the box in which the image is loaded.

Values

Integer. Specifies the box width in pixels.

Examples

Graphic.ImageWidth = 200;

SaveAsGifs

Saves an image as a .gif or .jpeg file.

Values

l true. Saves the image as a .gif file with 256-color depth.

l false. Saves the image as a .jpeg file with 16-bit color depth.

When the Sage CRM server graphics adapter is configured to allow for 16-bit color depth or greater,
this property is set to false by default. Otherwise, this property is set to true.

Examples

Graphic.SaveAsGifs = true;

Sage CRM 2023 R2 - Developer Guide Page 286 of 403

vSpace

Adds a vertical space to the left and to the right of the image.

Values

Integer. Specifies the size of the vertical space to add. By default, this value is 0.

Examples

Graphic.vSpace = 10;

Sage CRM 2023 R2 - Developer Guide Page 287 of 403

CRMGridColBlock object
Use the CRMGridColBlock object to set the properties of an individual column within a list.
CRMGridColBlock is related to CRMList Block but is a child of the CRM object.

The properties that apply are similar to the fields available when adding columns to a custom list
in the <My Profile> | Administration | Customization | <Entity> | Lists area of Sage CRM.

Syntax to use this object:

ListBlock = CRM.GetBlock("companygrid");
ListBlock.AddGridCol("gridcolname");
ListBlock.GetGridCol("gridcolname");

l CRMGridColBlock properties

l Code example: CRMGridColBlock object

CRMGridColBlock properties

l Alignment. Sets the alignment of text within the column.

l AllowOrderBy. Sorts entries in the list by the values in the column.

l CreateScript. Specifies the server-side JavaScript to run upon the creation of the
CRMGridColBlock instance.

l CustomActionFile. Hyperlinks a column to an ASP file.

l CustomIdField. Allows a value to be passed to the custom file when the corresponding
column is selected.

l JumpAction. Specifies the jump action for the CustomActionFile property.

l JumpEntity. Adds a hyperlink that opens the summary screen of an entity record.

l JumpKey. Specifies the jump key for the CustomActionFile property.

l OrderByDesc. Sorts entries in the list in the descending order. To use this property, set
AllowOrderBy to true.

l ShowHeading. Shows or hides the column heading.

l ShowSelectAsGif. Shows the values in the column as GIF image.

l Visible. Shows or hides a column when the CRMGridColBlock object is executed.

Alignment

Sets the alignment of text within the column.

Sage CRM 2023 R2 - Developer Guide Page 288 of 403

Values

This property can take one of the following values:

l Left (default)

l Right

l Center

Examples

CaseListBlock = CRM.GetBlock('CaseListBlock');
Source = CaseListBlock.AddGridCol('Case_Source');
Source.AllowOrderBy = true;
Source.Alignment = 'right';
CRM.AddContent(CaseListBlock.Execute());
Response.Write(CRM.GetPage());

Aligns the text in the Source column to the right.

AllowOrderBy

Sorts entries in the list by the values in the column. By default, the entries are sorted in the
ascending order.

Values

l true. Enables sorting.

l false. Disables sorting.

Example

CaseListBlock = CRM.GetBlock('CaseListBlock');
FoundIn = CaseListBlock.AddGridCol('Case_FoundVer');
FoundIn.AllowOrderBy = true;
CRM.AddContent(CaseListBlock.Execute());
Response.Write(CRM.GetPage());

Adds a new column (Case_FoundVer) to the list and sorts entries in the list by that column.

CreateScript

Specifies the server-side JavaScript to run upon the creation of the CRMGridColBlock instance.

Sage CRM 2023 R2 - Developer Guide Page 289 of 403

Values

l String. Specifies the JavaScript to run.

Example

CaseListBlock = CRM.GetBlock('CaseListBlock');
FoundIn = CaseListBlock.AddGridCol('pers_firstname');
FoundIn.AllowOrderBy = true;
FoundIn.OrderByDesc = true;
FoundIn.CreateScript = "if(CRM.GetContextInfo("company","comp_companyid")){Visible = false;}";
CRM.AddContent(CaseListBlock.Execute());
Response.Write(CRM.GetPage());

Adds a new column (pers_firstname) to the list. Sorts entries in the pers_firstname column in the
descending order. Hides the Company name column if it is present in the context.

CustomActionFile

Hyperlinks a column to an ASP file.

When a user clicks an item in the column, the ASP file is called up, passing in the value of the
field set in the CustomIdField property in the query string. This property is only applicable when
the JumpAction property is set to 430.

Values

Name of the ASP file.

Examples

list = CRM.GetBlock('CompanyGrid');
g = list.GetGridCol('comp_name');
g.JumpAction = 430;
g.CustomIdField = 'comp_companyid';
g.CustomActionFile = 'invoices.asp';
CRM.AddContent(list.Execute("comp_name like 'eu'"));
Response.Write(CRM.GetPage());

Sets the custom jump to the invoices ASP page.

Note that when you reference a value from the QueryString (or a form field), always reference the
value rather than the object itself, for example:

ThisComp = Request.QueryString('comp_companyid');

Sage CRM 2023 R2 - Developer Guide Page 290 of 403

or

a = Request.QueryString("field");

If there's a possibility of a QueryString field being duplicated, test its length and reassign the
variable.

CustomIdField

Allows a value to be passed to the custom file when the corresponding column is selected. The
value is passed to the query string in the following form:

<FieldName> = <Value>

This property is only applicable to columns for which CustomActionFile is set.

Values

Name of any field in the view for the list.

Examples

list = CRM.GetBlock('CompanyGrid');
g = list.GetGridCol('comp_name');
g.JumpAction = 430;
g.CustomIdField = 'comp_companyid';
g.CustomActionFile = 'test.asp';
CRM.AddContent(list.Execute("comp_name like 'o%'"));
Response.Write(CRM.GetPage());

Sets the ID field for the custom jump to the comp_companyid field.

JumpAction

Specifies the jump action for the CustomActionFile property.

Example

list = CRM.GetBlock('CompanyGrid');
g = list.GetGridCol('comp_name');
g.JumpAction = 430;
g.CustomIdField = 'comp_companyid';
g.CustomActionFile = 'test.asp';
CRM.AddContent(list.Execute("comp_name like 'o%'"));
Response.Write(CRM.GetPage());

Sage CRM 2023 R2 - Developer Guide Page 291 of 403

Sets the ID field for the custom jump to the comp_companyid field. The JumpAction value
specifies the action to perform. In this case, it is custompage (430) .

JumpEntity

Adds a hyperlink that opens the summary screen of an entity record.

The entity must be relevant to the list. The column of the entity must exist within the view or table
on which the list is based. For example, it's possible to jump to an Opportunity from an
Opportunity list but not from a Case list.

Values

This property can take one of the following values:

l company

l person

l communication

l case

l address

l library

l notes

l custom table

Examples

PersonList = CRM.GetBlock("persongrid");
GridCol = PersonList.GetGridCol("pers_firstname");
GridCol.JumpEntity = "person";
CRM.AddContent(PersonList.Execute(''));
Response.Write(CRM.GetPage());

Adds a hyperlink to the pers_firstname field. When a user clicks the hyperlink, the person's
summary screen opens.

JumpKey

Specifies the dominant key of the entity to open.

Sage CRM 2023 R2 - Developer Guide Page 292 of 403

Example

list = CRM.GetBlock('CompanyGrid');
g = list.GetGridCol('comp_name');
g.JumpAction = 430;
g.JumpKey = 1;
g.CustomIdField = 'comp_companyid';
g.CustomActionFile = 'test.asp';
CRM.AddContent(list.Execute("comp_name like 'o%'"));
Response.Write(CRM.GetPage());

Adds a new column (pers_firstname) to the list. Sorts entries in the pers_firstname column in
the descending order. The JumpKey value specifies the dominant key (entity). In this example, it is
Company (1).

OrderByDesc

Sorts entries in the list in the ascending or descending order. To use this property, set
AllowOrderBy to true.

Values

l true. Sorts entries in the descending order: 9 to 0 and/or Z to A.

l false (default). Sorts entries in the ascending order: 0 to 9 and/or A to Z.

Example

CaseListBlock = CRM.GetBlock('CaseListBlock');
FoundIn = CaseListBlock.AddGridCol('pers_firstname');
FoundIn.AllowOrderBy = true;
FoundIn.OrderByDesc = true;
CRM.AddContent(CaseListBlock.Execute());
Response.Write(CRM.GetPage());

Adds a new column (pers_firstname) to the list and sorts entries in the list by that column in the
descending order.

ShowHeading

Shows or hides the column heading.

Values

This property can take one of the following values:

Sage CRM 2023 R2 - Developer Guide Page 293 of 403

l true (default). Shows the column heading.

l false. Hides the column heading.

Examples

CaseListBlock = CRM.GetBlock('CaseListBlock');
Source = CaseListBlock.AddGridCol('Case_Source');
Source.ShowHeading = false;
Source.Alignment = 'LEFT';
CRM.AddContent(CaseListBlock.Execute());
Response.Write(CRM.GetPage());

Adds a column case_source to the case list. The column heading is hidden.

ShowSelectAsGif

Shows the values in the column as GIF images.

This property is only applicable if the column type is Select and there are .gif files in the folder
for each option in the list.

Values

This attribute can take one of the following values:

l true. Shows the values as GIF images.

l false (default). Shows the values as text.

Examples

GridCol.ShowSelectAsGif = true;

Shows the values in the column as GIF images.

Visible

Shows or hides a column when the CRMGridColBlock object is executed.

Values

l true (default). Shows a column.

l false Hides a column.

Sage CRM 2023 R2 - Developer Guide Page 294 of 403

Example

CaseListBlock = CRM.GetBlock('CaseListBlock');
FoundIn = CaseListBlock.GetGridCol('pers_firstname');
FoundIn.Visible = false;
CRM.AddContent(CaseListBlock.Execute());
Response.Write(CRM.GetPage());

Hides the pers_firstname column.

Code example: CRMGridColBlock object

This example uses the CRMGridColBlock object to add and remove columns in a list and to edit the
properties of columns in a list. The page is used in the Company tab group to show all the People
for the current Company.

<!-- #include file ="sagecrm.js" -->
<%

// Start with the Person list.
PersonList = CRM.GetBlock("persongrid");

// Add the Person alternative number as the third column in the list, with no heading.
GridCol = PersonList.AddGridCol("pers_faxnumber",2);
GridCol.ShowHeading = false;

// Get the GridCol block for the FirstName column.
GridCol = PersonList.GetGridCol("pers_firstname");
GridCol.AllowOrderBy = true;
GridCol.ShowHeading = true;

// Set FirstName column to jump to another ASP page.
GridCol.JumpEntity = "custom";
GridCol.CustomActionFile = "myP.asp";
GridCol.CustomIdField = "pers_personId";

// Remove the Company Name column from the list.
PersonList.DeleteGridCol('comp_name');
PersonList.Title = "Standard Person Grid, with some changes";
CompanyId = CRM.GetContextInfo('company','comp_companyid');
CRM.AddContent(PersonList.Execute('pers_companyid = '+CompanyId));
Response.Write(CRM.GetPage());

%>

Sage CRM 2023 R2 - Developer Guide Page 295 of 403

CRMListBlock object
Use the CRMListBlock object to create and display lists.

CRMListBlock is a child of the CRMBlock object and parent of the CRMGridColBlock object. You
can link the list block to a search box in the CRMEntryGroupBlock object and use the search
result as the argument for the list block.

Preceding code:

ListBlock = CRM.GetBlock('companygrid');

l CRMListBlock methods

l CRMListBlock properties

l Code example: CRMListBlock object

CRMListBlock methods

l AddGridCol(ColName, Position, AllowOrderBy). Adds a new grid column dynamically to
a List block.

l DeleteGridCol(ColName). Deletes the specifies column from the list.

l Execute(Arg). Displays a list.

l GetGridCol. Returns a reference to the specified grid column.

AddGridCol(ColName, Position, AllowOrderBy)

Adds a new grid column dynamically to a List block.

The changes don't apply outside the ASP pages they're used in.

Parameters

l ColName (required). Specifies the name of the field to be added as a column. The field
must be relevant to the List block. It must be available in the table or view on which the
List block is based.

l Position (optional). Specifies the position at which to add the column.
Possible values:

l <a positive integer>. Specifies the index of the position at which to add the
column.

Sage CRM 2023 R2 - Developer Guide Page 296 of 403

l 0. Adds the column to the first position.

l -1 (default). Adds the column to the last position.
l AllowOrderBy (optional). Specifies if the entries in the column can be sorted.
Possible values:

l true. Specifies that the entries cannot be sorted.

l false (default). Specifies that the entries can be sorted.

Examples

MyList = CRM.GetBlock('CompanyGrid');
MyList.AddGridCol('comp_revenue', -1, true);
CRM.AddContent(MyList.Execute());
Response.Write(CRM.GetPage());

Adds a new column comp_revenue to the end of the company grid list. The entries in the new
column can be sorted.

DeleteGridCol(ColName)

Deletes the specifies column from the list.

Parameters

ColName. Specifies the name of the column to delete.

Examples

ListBlock = CRM.GetBlock("companygrid");
ListBlock.DeleteGridCol("comp_website");
CRM.AddContent(ListBlock.Execute());
Response.Write(CRM.GetPage());

Deletes the comp_website column in the company list.

Execute(Arg)

Displays a list.

Parameters

Arg. This parameter accepts values of the following types:

Sage CRM 2023 R2 - Developer Guide Page 297 of 403

l String. This type of value is processed as the WHERE clause of an SQL statement.

l Entrygroup. This type of value is used to form the WHERE clause of an SQL satement.

Examples

ListBlock = CRM.GetBlock("companygrid");
CRM.AddContent(ListBlock.Execute("comp_type='Customer'"));
Response.Write(CRM.GetPage());

Lists all companies whose type is Customer.

SearchContainer = CRM.GetBlock('Container');
SearchBlock = CRM.GetBlock('PersonSearchBox');
SearchContainer.AddBlock(SearchBlock);
if (CRM.Mode == 2)

{
 resultsBlock = CRM.GetBlock('PersonGrid');
 resultsBlock.ArgObj = SearchBlock;
 SearchContainer.AddBlock(resultsBlock);
 }
CRM.AddContent(SearchContainer.Execute());
Response.Write(CRM.GetPage());

Uses the result of the entrygroup search as the argument for the list.

GetGridCol

Returns a reference to the specified grid column.

To set the properties of the column, use the CRMGridColBlock properties.

Parameters

GridColName. Specifies the column name.

Return value

l CRMGridColBlock object. Indicates that the specified column exists.

l Nil object. Indicates that the specified column doesn't exist.

Examples

ListBlock = CRM.GetBlock("companygrid");
Column = ListBlock.GetGridCol("comp_name");
Column.allowOrderby = true;

Sage CRM 2023 R2 - Developer Guide Page 298 of 403

CRM.AddContent(ListBlock.Execute());
Response.Write(CRM.GetPage());

Returns the comp_name column and configures the list to be ordered by this column.

CRMListBlock properties

l CaptionFamily. Sets the caption family for a list.

l PadBottom. Shows or hides empty rows in a list.

l prevURL. Specifies the URL of the ASP page to return to.

l RowsPerScreen. Sets the maximum number of rows displayed on each screen.

l SelectSql. Specifies the SQL statement to select items in the list.

CaptionFamily

Sets the caption family for a list. As a result, translations can be added for the captions at the top
of the list.

When this parameter is set, translations are added to the caption family using the following codes:

l Name. Caption family name.

l NoRecordsFound. Caption that is displayed when there are no entries in the list.

l RecordsFound. Caption that is displayed when entries are present in the list.

l RecordFound. Caption that is displayed when there is only one entry in the list.

l PreRecordsFound. Caption that is displayed before the number of records found.

l PreRecordFound. Caption that is displayed if only one entry is found.

Values

String. Specifies the caption family name.

Examples

MyList = CRM.GetBlock('CompanyGrid');
MyList.CaptionFamily = "Campaigns";
CRM.AddContent(MyList.Execute());
Response.Write(CRM.GetPage());

Changes the caption family of the company list to Campaigns.

Sage CRM 2023 R2 - Developer Guide Page 299 of 403

PadBottom

Shows or hides empty rows in a list.

Values

This property can take one of the following values:

l true(default). Shows empty rows. In this case, the number of rows shown always equals the
value set in the RowsPerScreen property.

l false. Hides empty rows.

Examples

List = CRM.GetBlock('companygrid');
List.RowsPerScreen = 8;
List.PadBottom = false;
CRM.AddContent(List.Execute());
Response.Write(CRM.GetPage());

Hides empty rows. The column heading is displayed even if there are no rows to display.

prevURL

Specifies the URL of the ASP page to return to.

Use this property if any columns in the List block have links to a main entity (such as Company,
Person, Opportunity, Case, Lead, or Solution).

Values

Value. Specifies the ASP page URL.

Examples

&Key-1=iKey_CustomEntity&PrevCustomURL=PrevUrl

Specifies that the previous dominant key was a custom page and where to go back to.

RowsPerScreen

Sets the maximum number of rows displayed on each screen.

Sage CRM 2023 R2 - Developer Guide Page 300 of 403

Use this property to limit the number of rows displayed per screen, and then use the forward and
back buttons to display next or previous screens. Each user has a Grid Size setting in their
Preferences. This setting overrides the RowsPerScreen setting except where you're using the
ListBlock in a CRMSelfService object.

Parameters

None

Examples

ListBlock = CRM.GetBlock("CompanyGrid");
ListBlock.RowsPerScreen = 8;
CRM.AddContent(ListBlock.Execute());
Response.Write(CRM.GetPage());

Displays a list of companies, 8 entries per screen.

SelectSql

Specifies the SQL statement to select items in the list.

This property is only applicable when the List block is not based on an existing grid or list; for
example, when the List block is returned by the GetBlock(BlockName) method.

Value

String. Specifies the SQL SELECT statement.

Use the following syntax:

SELECT * FROM <TableName>
SELECT * FROM <ViewName>

Do not put anything after the table or view name. The WHERE statement is configured by the list.

Examples

NewList = CRM.GetBlock("list");
NewList.SelectSql = "Select * from vCompany";
NewList.AddGridCol("Comp_Name");
CRM.AddContent(NewList.Execute());
Response.Write(CRM.GetPage());

Displays a list of companies from the vCompany view.

Sage CRM 2023 R2 - Developer Guide Page 301 of 403

Code example: CRMListBlock object

This example creates a case list from the company context, where the status and stage columns are
removed if the user isn't on the Sales team. A FoundIn column is added if the user is on the
Operations team.

<!-- #include file ="sagecrm.js"-->
<%

// Get the current Company ID.
ThisCompanyId = CRM.GetContextInfo('Company','Comp_CompanyId');

// Get a reference to the CaseListBlock.
CaseListBlock = CRM.GetBlock('CaseListBlock');

// Build the SQL WHERE clause.
SearchSql = 'Case_PrimaryCompanyId='+ThisCompanyId + " and Case_Status='In Progress' "

// Check the user's team ID.
UserChannel = CRM.GetContextInfo('User','User_PrimaryChannelId');

// Remove fields if the user's team is not Sales.
// 1 in the code below is the Channel ID of the Sales team.
if (UserChannel != 1)

{
 CaseListBlock.DeleteGridCol('Case_Status');
 CaseListBlock.DeleteGridCol('Case_Stage');
 }

// Add field for Development team.
// 5 in the code below is the Channel ID of the Operations team.
if (UserChannel == 5)

{
FoundIn = CaseListBlock.AddGridCol('Case_FoundVer');

// Enable sorting by the Found In column.
 FoundIn.AllowOrderBy = true;
 }

// Execute the block, pass in the SQL clause.
CRM.AddContent(CaseListBlock.Execute(SearchSql));
Response.Write(CRM.GetPage());

%>

Sage CRM 2023 R2 - Developer Guide Page 302 of 403

CRMMarqueeBlock object
Use the CRMMarqueeBlock object to add scrolling text to a page. For example, a news ticker.
CRMMarqueeBlock is a child of CRMBlock object.

The Marquee block reads from the Custom Captions table for news headlines and story links, and
builds a scrolling display. You can control the direction of the scrolling, the positioning, the
speed, and the style sheet used. The object provides a dismiss button which is overwritten when
the news changes.

The news headlines and news stories must be created using CRM translation handling. You can
configure translation handling in the <My Profile> | Administration | Customization |
Translations area of Sage CRM.

The caption family for news headlines is news_headline, and the link for a news story has a caption
family of news_story. News stories must have the same caption code as the associated headline.

You call the Marquee block from an ASP page as follows:

var Marq;
Marq = CRM.GetBlock('marquee');
Marq.VerticalMinimum = 150;
Marq.VerticalMaximum = 150;
Marq.HorizontalMinimum = 70;
Marq.HorizontalMinimum = 70;
CRM.AddContent(Marq.Execute());
Response.Write(CRM.GetPage());

l CRMMarqueeBlock properties

CRMMarqueeBlock properties

l HorizontalMinimum. Sets the start point of horizontal scrolling.

l HorizontalMaximum. Sets the end point of horizontal scrolling.

l VerticalMinimum. Sets the start point of vertical scrolling.

l VerticalMaximum. Sets the end point of vertical scrolling.

l ScrollSpeed. Sets the scrolling speed.

l StyleSheet. Specifies the Cascading Style Sheet (CSS) to use.

Sage CRM 2023 R2 - Developer Guide Page 303 of 403

To implement... Do this...

Vertical scrolling l Set VerticalMinimum and
VerticalMaximum to
different values.

l Set HorizontalMinimum and
HorizontalMaximum to the
same value.

Horizontal scrolling l Set HorizontalMinimum and
HorizontalMaximum to
different values.

l Set VerticalMinimum and
VerticalMaximum to the
same value.

HorizontalMinimum

Sets the start point of horizontal scrolling.

This is the point from which horizontal scrolling begins.

Values

Integer. The default value is 0.

Example

Marq = CRM.GetBlock('marquee');
Marq.HorizontalMinimum = 0;

Sets the start point of horizontal scrolling to 0.

HorizontalMaximum

Sets the end point of horizontal scrolling.

This is how far the Marquee block can be scrolled to the right of the screen.

Values

Integer. The default value is 800.

Sage CRM 2023 R2 - Developer Guide Page 304 of 403

Example

Marq = CRM.GetBlock('marquee');
Marq.HorizontalMaximum = 850;

Sets the end point of horizontal scrolling to 850.

VerticalMinimum

Sets the start point of vertical scrolling.

This is the point from which vertical scrolling begins.

Values

Integer. The default value is 300.

Examples

Marq = CRM.GetBlock('marquee');
Marq.VerticalMinimum = 100;

Sets the start point of vertical scrolling to 100.

VerticalMaximum

Sets the end point of vertical scrolling.

This is how far the Marquee block can be scrolled to the bottom of the screen.

Values

Integer. The default value is 300.

Examples

Marq = CRM.GetBlock('marquee');
Marq.VerticalMaximum = 350;

Sets the end point of vertical scrolling to 350.

Sage CRM 2023 R2 - Developer Guide Page 305 of 403

ScrollSpeed

Sets the scrolling speed.

Values

Integer. The default value is 120.

Example

Marq = CRM.GetBlock('marquee');
Marq.ScrollSpeed = 200;

Sets the scrolling speed to 200.

StyleSheet

Specifies the Cascading Style Sheet (CSS) file to use.

You can use this property to change the appearance of the Marquee block.

Values

Text. Specifies the .css file name. The default value is DiagonalText. This must be a WideString
value.

Examples

Marq = CRM.GetBlock('marquee');
Marq.StyleSheet = 'NewStyle.css';

Sage CRM 2023 R2 - Developer Guide Page 306 of 403

CRMMessageBlock object
Use the CRMMessageBlock object to send email messages or SMS texts. CRMMessageBlock is a
child of the CRM object. You can include the block in ASP pages to show a simple email form or
to automate the message sent in response to an event. It can be used in visual and in hidden
mode.

Syntax to initiate this block:

MessageBlock = CRM.GetBlock('messageblock');

l Enabling CRMMessageBlock object

l CRMMessageBlock methods

l CRMMessageBlock properties

Enabling CRMMessageBlock object

Messaging needs the following system components:

l An email server configured to redirect all incoming messages originating from a specified
domain to the same folder.

l An SMS gateway referring to this folder and the related mobile phone connection.

To enable the CRMMessageBlock object, log on to Sage CRM as a system administrator, go to
<My Profile> | Administration | E-mail And Documents | E-mail Configuration, and then
configure the following options:

l Outgoing Mail Server (SMTP). Specify the IP address of the SMTP server you want to use
for sending email messages.

l SMTP User Name. Enter the user name of the account with which you want to access the
SMTP server.

l SMTP Password. Enter the password for the specified access account.

l SMTP Port. Specify the SMTP port you want to use. By default, this is port 25.

l SMS Domain Name. Specify the mail domain used to hold the SMS messages, for example
sms.domain.com.

l SMTP Server For SMS Messaging. Specify the SMTP server you want to use for sending
SMS. You can specify a valid IP address or FQDN, such as mail.sms.domain.com.

l Use SMS Feature. Set this option to Yes to enable SMS messaging.

l SMS From Address. Specify a valid email address in the person profile.

Sage CRM 2023 R2 - Developer Guide Page 307 of 403

The message details (recipients, CC, BCC, subject, body) are retrieved from the form content, if the
DisplayForm property is set to true.

The properties specified in the ASP page are defaults for the first value of the entry components of
the form, unless the Mode property is set to 2 (send).

The addresses specified in the form's fields can be phone numbers or email addresses (separated
by a comma or semicolon). The object automatically distinguishes the mode.
The messages sent as SMS are truncated up to 160 characters, due to SMS format specifications.

CRMMessageBlock methods

l AddRecipient(Address, Name, MsgType). Adds a recipient to an email message.

AddRecipient(Address, Name, MsgType)

Adds a recipient to an email message.

Parameters

l Address. Specifies an email address to add.

l Name. Specifies the recipient name associated with the email address.

l MsgType. Specifies the email message field to add the email address to.

Possible values:

l TO. Adds the email address to the To field.

l CC. Adds the email address to the Cc field.

l BCC. Adds the email address to the Bcc field.

Examples

1 // Create a message block.
2 var myMailObject = CRM.GetBlock("messageblock");
3
4 // Display an email form and set an email subject.
5 myMailObject.DisplayForm = true;
6 myMailObject.mSubject = "My email subject";
7
8 // Set email body and display the Cc and Bcc fields.
9 myMailObject.mBody = "My email body";

10 myMailObject.mShowCC = true;
11 myMailObject.mShowBCC = true;
12
13 // Add email recipients to the To, Cc, and Bcc fields.
14 myMailObject.AddRecipient("training@sagecrm.com","Training","TO");
15 myMailObject.AddRecipient("support@sagecrm.com","Support","CC");
16 myMailObject.AddRecipient("manager@sagecrm.com","Manager","BCC");

Sage CRM 2023 R2 - Developer Guide Page 308 of 403

17 Response.Write(myMailObject.Execute());

Creates and displays an email form, sets an email subject, and adds recipients to the email
message fields.

1 // Create a message block.
2 var myMailObject = CRM.GetBlock("messageblock");
3
4 // Hide the email form and set an email subject and body.
5 myMailObject.DisplayForm = false;
6 myMailObject.mSubject = "My email subject";
7 myMailObject.mBody = "My email body";
8
9 // Add a recipient to the To field.

10 myMailObject.AddRecipient("training@sagecrm.com","Training","TO");
11
12 // Send the message immediately.
13 myMailObject.Mode = 2;
14
15 // Write the operation output.
16 Response.Write(myMailObject.Execute());
17
18 // Record whether the message has been sent successfully.
19 if (myMailObject.mSentOK)
20 {
21 Response.Write("Email was sent successfully.");
22 }
23
24 else
25 {
26 Response.Write("An error has occurred. Details: "+myMailObject.mErrorMessage);
27 }

Creates a hidden email form, adds a recipient to the To field, sends the email, and records the
operation output.

CRMMessageBlock properties

l DisplayForm. Shows or hides an email form.

l mAddressFrom. Sets sender's email address.

l mNameFrom. Sets sender's name.

l mBody. Sets the body text of the message.

l mErrorMessage. Displays the related error if the message isn't sent successfully.

l mSentOK. Displays the status of the sent message.

l mShowCC. Shows or hides the CC field (carbon copy) in the Sage CRM user interface.

l mShowBCC. Shows or hides the BCC field (blind carbon copy) in the Sage CRM user

Sage CRM 2023 R2 - Developer Guide Page 309 of 403

interface.

l mSubject. Sets the subject of the message.

DisplayForm

Shows or hides an email form.

If the message contains errors the form is displayed regardless of the value set in this parameter.

Values

l true (default). Shows the email form.

l false. Hides the email form.

Example

var MailObj;
MailObj = CRM.GetBlock("messageblock");
MailObj.Mode = 2;
MailObj.DisplayForm = false;
CRM.AddContent(MailObj.Execute());
Response.Write(CRM.GetPage());

Sends a message without displaying the email form. Displays the email form only if there are
errors.

mAddressFrom

Sets sender's email address.

This property is used in the Self Service mode when the user is logged in and the email address is
retrieved from the current user details.

Values

Valid email address.

Examples

MailObj.mAddressFrom = 'messagesender@domain.com';
MailObj.mNameFrom = 'George Smith';

Sets the email address and name of sender.

Sage CRM 2023 R2 - Developer Guide Page 310 of 403

mNameFrom

Sets sender's name.

This property is used in the Self Service mode when the user is logged in and the name is
retrieved from the current user details.

Values

Valid sender's name.

Examples

MailObj.mAddressFrom = 'messagesender@domain.com';
MailObj.mNameFrom = 'George Smith';

Sets the email address and name of sender.

mBody

Sets the body text of the message.

The maximum body length for SMS messages is 160 characters.

Values

Text

Example

MailObj = CRM.GetBlock("messageblock");
MailObj.mBody = 'This is message text.';
CRM.AddContent(mailObj.execute());
Response.Write(CRM.GetPage());

mErrorMessage

Displays the related error if the message isn't sent successfully.

Values

Text (read-only)

Sage CRM 2023 R2 - Developer Guide Page 311 of 403

Examples

if(!mSentOK)
{

 // If errors occurred then show the proper message.
 CRM.AddContent('Error: '+mErrorMessage);
 }

else
{

 CRM.AddContent('Message Sent OK'());
 }

Response.Write(CRM.GetPage());

Displays the error if the message isn't sent successfully.

mSentOK

Displays the status of the sent message.

Values

This parameter can take one of the following values:

l true. Indicates that the message is sent successfully.

l false (read-only). Indicates that message sending has failed and shows the corresponding
error.

Examples

if(!MailObj.mSentOK)
{

 // If an error occurs, then show the corresponding error message.
 CRM.AddContent('ERROR: ' + MailObj.mErrorMessage);
 }

else
{

 CRM.AddContent('Message was sent successfully.');
 }

Response.Write(CRM.GetPage());

with (MailObj)
{

 if(!mSentOK)
{

Sage CRM 2023 R2 - Developer Guide Page 312 of 403

 // If an error occurs, then show the corresponding error message.
 CRM.AddContent('ERROR: ' + mErrorMessage);
 }

 else {CRM.AddContent('Message was sent successfully.');
 }

The examples above display "Message was sent successfully" if the message was sent successfully.
Otherwise, they display the corresponding error message.

mShowCC

Shows or hides the CC field (carbon copy) in the Sage CRM user interface.

Values

This property can take one of the following values:

l true. Shows the CC field.

l false. Hides the CC field.

Examples

MailObj = CRM.GetBlock("messageblock");
MailObj.mSubject = 'New Message';
MailObj.mBody = "This is where you put the content of the message.";
MailObj.mShowCC = true;
CRM.AddContent(mailObj.execute());
Response.Write(CRM.GetPage());

Shows the CC field in the Sage CRM user interface.

mShowBCC

Shows or hides the BCC field (blind carbon copy) in the Sage CRM user interface.

Values

This property can take one of the following values:

l true. Shows the BCC field.

l false. Hides the BCC field.

Sage CRM 2023 R2 - Developer Guide Page 313 of 403

Examples

MailObj = CRM.GetBlock("messageblock");
MailObj.mSubject = 'New Message';
MailObj.mBody = "This is where you put the content of the message.";
MailObj.mShowBCC = true;
CRM.AddContent(mailObj.execute());
Response.Write(CRM.GetPage());

Shows the BCC field in the Sage CRM user interface.

mSubject

Sets the subject of the message.

Values

String

Examples

MailObj = CRM.GetBlock("messageblock");
MailObj.mSubject = 'My message subject';
CRM.AddContent(mailObj.execute());
Response.Write(CRM.GetPage());

Sets the subject of the message to "My message subject".

Sage CRM 2023 R2 - Developer Guide Page 314 of 403

CRMOrgGraphicBlock object
The CRMOrgGraphicBlock object is an implementation of CRMGraphicBlock object. Use
CRMOrgGraphicBlock for organizational charting. The most common use is to display an employee
hierarchy for a company. You can pass data to the diagram from an ASP page or from a table. You
can set parameters to describe the look of the diagram. The organizational graphic is recreated
every time it's requested and can therefore be based on real time data.

Syntax to initiate this block:

OrgGraph = CRM.GetBlock('orgchart');

CRMOrgGraphicBlock methods

OrgTree(Mode, Value). Adds parent and child items for the CRMOrgGraphicBlock object and
sets the appearance of the organizational chart.

OrgTree(Mode, Value)

Adds parent and child items for the CRMOrgGraphicBlock object and sets the appearance of the
organizational chart.

Syntax

OrgTree
('Add','<ParentName>,<Name>,<Child=true/false>,<URL>,<Description>,<Relationship>');

Parameters

l Mode. WideString.

l Value. WideString.

Examples

OrgGraph.OrgTree('Add',',Top Level,True');
OrgGraph.OrgTree('Add','Top Level,Child,True');
OrgGraph.OrgTree('GetLevelCount','1');
OrgGraph.OrgTree('GetLargestLevelSize','');
OrgGraph.OrgTree('Animated','False');
OrgGraph.OrgTree('FullBoxWidth','88');
OrgGraph.OrgTree('FullBoxHeight','50');
OrgGraph.OrgTree('BoxWidth','40');
OrgGraph.OrgTree('BoxHeight','25');

Sage CRM 2023 R2 - Developer Guide Page 315 of 403

OrgGraph.OrgTree('EntityIcon','c:\\person.bmp');
OrgGraph.OrgTree('EntityImage','c:\\back.bmp');
OrgGraph.OrgTree('BoxStyle','Square');
OrgGraph.OrgTree('LineStyle','Ray');

Sage CRM 2023 R2 - Developer Guide Page 316 of 403

CRMPipelineGraphicBlock object
The CRMPipelineGraphicBlock object is an implementation of the CRMGraphicBlock object that
includes extra functionality. Use CRMPipelineGraphicBlock to create cross-sectional diagrams that
represent data from an ASP page or table. Use the parameters of this block to change the look and
feel of the pipeline.

You can customize individual sections of the pipeline graphic to change when the user clicks them.
The pipeline graphic is recreated every time it's requested and can therefore be based on real
time data. It can also use all the features of the graphics block.

The default size of pipeline graphic is 600 pixels wide by 100 pixels high, but you can change it
using the Resize(Width, Height) method.

Syntax to initiate this block:

MyObj = CRM.GetBlock('pipeline');

l CRMPipelineGraphicBlock methods

l CRMPipelineGraphicBlock properties

CRMPipelineGraphicBlock methods

l AddPipeEntry(Name, Value, Description). Adds a pipe section to the pipeline diagram.

l ChooseBackGround(Value). Sets the background of the pipeline diagram.

l PipelineStyle(Mode, Value). Changes the appearance and size of individual sections of
the pipeline graphic.

AddPipeEntry(Name, Value, Description)

Adds a pipe section to the pipeline diagram.

Parameters

l Name. Specifies the name of the pipe section to show in the pipeline legend. This
parameter accepts a WideString value.

l Value. Specifies the percentage that the pipe section takes in the pipeline diagram. This
parameter accepts an integer value.

l Description. Specifies the tooltip that appears when the user points to the pipe section.

Sage CRM 2023 R2 - Developer Guide Page 317 of 403

l Url. Specifies the URL (such as web page or ASP page) to open when the user clicks the
pipe section.

Examples

MyPipe = CRM.GetBlock('pipeline');
MyPipe.AddPipeEntry('Sold', 100,'100 items sold', 'http://www.mydomain.com');
MyPipe.AddPipeEntry('Prospect', 40,'40 prospects', 'http://www.yahoo.com');
CRM.AddContent(MyPipe.Execute());
Response.Write(CRM.GetPage());

ChooseBackGround(Value)

Sets the background of the pipeline diagram.

Parameters

Value. Specifies the background image file to use. The default background is white. This
parameter can take one of the following values:

l 1. accpacblue.gif

l 2. accpacwhite.gif

l 5. listrow1gif

l 8. lightpurplemarblebright.gif

l 14. accpaccream.gif

l 15. listrow2.gif

You can find these files in the following folder on the Sage CRM server:

<Sage CRM installation folder>\WWWRoot\Themes\Img\default\Backgrounds

Examples

Pipe.ChooseBackGround(8);

Uses the lightpurplemarblebright.gif file as the background for the pipeline diagram.

PipelineStyle(Mode, Value)

Changes the appearance and size of individual sections of the pipeline graphic. For example, you
can change gradients or legends.

Sage CRM 2023 R2 - Developer Guide Page 318 of 403

Parameters

Mode. WideString.

Example

MyPipe = CRM.GetBlock('pipeline');
MyPipe.AddPipeEntry('Sold', 100,'100 items sold', 'http://www.crm.com');
MyPipe.AddPipeEntry('Prospect', 40,'40 prospects', 'http://www.yahoo.com');
MyPipe.PipelineStyle('Shape','Circle');
MyPipe.PipelineStyle('UseGradient','False');
MyPipe.PipelineStyle('Animated','False');
MyPipe.PipelineStyle('Selected','Sold');
MyPipe.PipelineStyle('SelectedWidth','10');
MyPipe.PipelineStyle('SelectedHeight','10');
MyPipe.PipelineStyle('PipeWidth','40');
MyPipe.PipelineStyle('PipeHeight','60');
MyPipe.PipelineStyle('ShowLegend','True');
CRM.AddContent(MyPipe.Execute());
Response.Write(CRM.GetPage());

CRMPipelineGraphicBlock properties

l Pipe_Summary. Sets a summary for the pipe section in HTML format.

l Selected. Selects a pipe section.

Pipe_Summary

Sets a summary for the pipe section in HTML format.

When a user points to the pipe section, the summary is displayed to the right of the section. This
property can be used to display a legend or description for the selected pipe section.

Parameters

Value. HTML code.

Example

Pipleline = CRM.GetBlock('pipeline');
Pipe = Pipleline.Selected(1);
Pipe.Pipe_Summary = '<table><td class=tablehead>Negotiating Selected (70)</td></table>';

Sage CRM 2023 R2 - Developer Guide Page 319 of 403

Selected

Selects a pipe section.

Once a pipe section is selected, you can change the section style.

Parameters

Value. Specifies the number of the section to select.

Examples

Pipeline = CRM.GetBlock('pipeline');
Pipeline.Selected(1);

Sage CRM 2023 R2 - Developer Guide Page 320 of 403

CRMQuery object
Use the CRMQuery Object to enter and execute SQL statements against a known system database.
This can be either the system database or an external database that's known and connected to
Sage CRM.

You can perform more powerful queries with CRMQuery than with the CRMRecord object. You can
use it to execute SQL statements that return results, for example, SELECT statements or statements
that don't return results, for example, DELETE statements.

Preceding code:

var Query;
Query = CRM.CreateQueryObj('Select * from tablename', 'databasename');

l CRMQuery properties

CRMQuery methods

l ExecSql(). Executes the SQL statement.

l Next(). Selects the next row or SELECT statement in the query.

l NextRecord(). Moves the specified query to the next record.

l Previous(). Selects the previous row or SELECT statement in the query.

l SelectSql(). Executes SQL statements.

l BeginTrans(). Starts transaction for the following SQL statements.

l CommitTrans(). Commits a transaction initiated by BeginTrans().

l RollbackTrans(). Rolls back a transaction initiated by BeginTrans().

ExecSql()

Executes the SQL statement.

Use this method to execute statements that do not return rows. For example, DELETE, INSERT, or
UPDATE.

To execute statements that do return rows (SELECT statements), use SelectSql().

Parameters

None

Sage CRM 2023 R2 - Developer Guide Page 321 of 403

Examples

var sql;
sql = "UPDATE Company SET Comp_PrimaryUserID='"+AccountMgr+"'
WHERE "+" Comp_CompanyId="+Values('Comp_CompanyId');
CRM.ExecSql(sql);

Executes the SQL UPDATE statement.

var myQuery;
var myResult;
myQuery = CRM.CreateQueryObj("update company set comp_source = 'TEST'
where comp_source is null","");
myResult = myQuery.ExecSql();
CRM.AddContent("Number of updated records: "+myResult);Response.Write(CRM.GetPage());

Updates company records and shows the number of updated records.

Next()

Selects the next row or SELECT statement in the query.

Parameters

None

Examples

var Query;
Query = CRM.CreateQueryObj("Select * from company", "");
Query.SelectSql();
while (!Query.eof)

{
 CRM.AddContent(Query("comp_companyid") + " = " + Query("comp_name") + "");
 Query.Next();
 }
Response.Write(CRM.GetPage());

Returns the next row in the query that displays company identifiers and names.

NextRecord()

Moves the specified query to the next record.

Sage CRM 2023 R2 - Developer Guide Page 322 of 403

Parameters

None

Examples

Query.NextRecord();

Previous()

Selects the previous row or SELECT statement in the query.

Parameters

None

Examples

Query.Previous();

SelectSql()

Executes SQL statements.

Use this method to execute statements that return rows (SELECT statements).

Parameters

None

Examples

var Query;
Query = CRM.CreateQueryObj("Select * from company", "");
Query.SelectSql();
while (!Query.eof)

{
 CRM.AddContent(Query("comp_companyid") + " = " + Query("comp_name")+" ");
 Query.NextRecord();
 }
Response.Write(CRM.GetPage());

Sage CRM 2023 R2 - Developer Guide Page 323 of 403

Displays the company identifier and name field from the selected SQL query until the end of the
query.

BeginTrans()

Starts transaction for the following SQL statements.

This transaction must be closed either by CommitTrans() or RollbackTrans().

Use this method to prevent dead locking when using table level scripts. Exercise extreme caution
when using this method because all transactions must be closed properly. Use the coding practice
showed in the example below.

Parameters

None

Examples

var updatequery;
updatequery = CRM.CreateQueryObj(sql);
try

{
 updatequery.BeginTrans();
 updatequery.ExecSql();
 updatequery.CommitTrans();
 }
catch(ex)

{
 updatequery.RollbackTrans();
 }

CommitTrans()

Commits a transaction initiated by BeginTrans().

Use this method to prevent dead locking when using table level scripts. Exercise extreme caution
when using this method because all transactions must be closed properly. Use the coding practice
shown in the example below.

Parameters

None

Sage CRM 2023 R2 - Developer Guide Page 324 of 403

Example

var updatequery;
updatequery = CRM.CreateQueryObj(sql);
try

{
 updatequery.BeginTrans();
 updatequery.ExecSql();
 updatequery.CommitTrans();
 }
catch(ex)

{
 updatequery.RollbackTrans();
 }

RollbackTrans()

Rolls back a transaction initiated by BeginTrans().

Use this method to prevent dead locking when using table level scripts. Exercise extreme caution
when using this method because all transactions must be closed properly. Use the coding practice
shown in the example below.

Parameters

None

Examples

var updatequery;
updatequery = CRM.CreateQueryObj(sql);
try

{
 updatequery.BeginTrans();
 updatequery.ExecSql();
 updatequery.CommitTrans();
 }
catch(ex)

{
 updatequery.RollbackTrans();
 }

CRMQuery properties

l Bof. Indicates the beginning of query.

l DatabaseName. Specifies a database other than the default system database.

Sage CRM 2023 R2 - Developer Guide Page 325 of 403

l Eof. Indicates the last row of query.

l FieldValue. Gets or sets individual fields in a query.

l RecordCount. Gets the number of records referred to by the CRMQuery object.

l SQL. Sets the SQL statement for the query.

Bof

Indicates the beginning of query.

Example

var comp;
comp = CRM.CreateQueryObj('select * from Company where Comp_CompanyId=12');
comp.SelectSql();
if ((!comp.eof) && (!comp.bof))

{
 CRM.AddContent(comp.comp_name);
 }
else

{
 CRM.AddContent('Company does not exist');
 }
Response.Write(CRM.GetPage());

Displays the company name if it is not at the beginning of the query.

DatabaseName

Specifies a database other than the default system database.

If this parameter is omitted, the default system database is used.

Parameters

Name. Specifies the database name. This parameter accepts a string value.

Examples

var Query;
Query = CRM.CreateQueryObj('Select * from company', 'crm');
Query.SelectSQL();
Query.DatabaseName(crm);

Executes the SQL statement on a database named crm.

Sage CRM 2023 R2 - Developer Guide Page 326 of 403

Eof

Indicates the end of query.

Example

var Query;
Query = CRM.CreateQueryObj("Select * from vCompany");
Query.SelectSql();
while (!Query.eof)

{
 Response.Write(Query("comp_companyid") + " = " + Query("comp_name")+' ');
 Query.NextRecord();
 }

Displays the company identifiers and name fields from the selected SQL query until the end of the
query.

FieldValue

Gets or sets individual fields in a query.

Parameters

FieldName. Specifies the field name.

Examples

var value;
value = Query.FieldValue("MyField");

Retrieves a field named MyField.

var value;
value=Query("MyField");

Retrieves a field named MyField

var Query;
Query = CRM.CreateQueryObj("Select * from company", "");
Query.SelectSql();
while (!Query.eof)

{
 CRM.AddContent(Query("comp_companyid") + " = " + Query("comp_name") + " ");

Sage CRM 2023 R2 - Developer Guide Page 327 of 403

 Query.NextRecord();
 }
Response.Write(CRM.GetPage());

Displays the company identifier and the name field from the selected SQL query.

RecordCount

Gets the number of records referred to by the CRMQuery object.

Parameters

None

Examples

var Query;
Query = CRM.CreateQueryObj("Select * from company");
Query.SelectSQL();
CRM.AddContent("There are " +Query.RecordCount+ " records.");
Response.Write(CRM.GetPage());

Displays a record count of all records in the Company table of the default database.

SQL

Sets the SQL statement for the query.

The SQL statement is usually passed in when the object is created, but you can change it using
this property. The SQL is not executed until you call one of the execute methods (SelectSql() or
ExecSql()).

Examples

var Query;
Query = CRM.CreateQueryObj("Select * from company", "");
Query.SQL = "Select * FROM person";
Query.SelectSql();
while (!Query.eof)

{
 CRM.AddContent (Query("pers_personid")+" = "+Query("pers_lastname") +" ");
 Query.NextRecord();
 }
Response.Write(CRM.GetPage());

Resets the SQL SELECT statement to query the Person table instead of the Company table.

Sage CRM 2023 R2 - Developer Guide Page 328 of 403

CRMRecord object
The CRMRecord object represents records in a table. This object is an enumerator that returns the
specified fields in a table.

CRMRecord contains a higher-level understanding of the columns than CRMQuery. Use CRMRecord
properties and methods to manipulate information in columns and save any edits.

To return the record that you manipulate, use the CreateRecord(TableName) and FindRecord
(TableName, QueryString) methods.

Examples of syntax to create the record object:

var record;
record = CRM.CreateRecord("cases");

var record;
record = CRM.FindRecord("cases","case_caseid=20");

l CRMRecord methods

l CRMRecord properties

CRMRecord methods

l FirstRecord(). Moves the record to point to the first record that matches the SQL passed in
when the Record object was created.

l NextRecord(). Returns the next record, if any.

l RecordLock. Locks the current Record object.

l SaveChanges(). Saves changes made to the current record to the database.

l SaveChangesNoTLS(). Saves changes made to the current record in the database. Does not
trigger any table-level scripts that exist for the table being updated.

l SetWorkflowInfo(vWorkflowName, vWorkflowState). Saves a new record to a workflow.

FirstRecord()

Moves the record to point to the first record that matches the SQL passed in when the Record
object was created.

When the Record object is created, it automatically points to the first record. Use this method to
set it.

Sage CRM 2023 R2 - Developer Guide Page 329 of 403

Example

var o;
o = CRM.FindRecord("company","comp_name like 'o%'");
while (!o.eof)

{
 CRM.AddContent(o.comp_name+'');o.NextRecord();
 }
o.FirstRecord();
CRM.AddContent('The first company is '+o.Comp_Name);
Response.Write(CRM.GetPage());

Finds companies whose names start with the letter o and displays the first company record.

NextRecord()

Returns the next record, if any.

Examples

var People;
People = CRM.FindRecord('Person','Pers_Deleted is null');
while (!People.Eof)

{
 CRM.AddContent(People.Pers_FirstName+' '+People.Pers_LastName+'');
 People.NextRecord();
 }
Response.Write(CRM.GetPage());

Displays a list of first and last names of people in the Person table.

RecordLock

Locks the current Record object.

If the record is already locked because someone else is using it, an error message is returned.

Locking is usually automatically handled by Container blocks. Use the RecordLock method only
when the standard container locking functionality is disabled (by setting the relevant Container
block property CheckLocks to false).

Parameters

None

Sage CRM 2023 R2 - Developer Guide Page 330 of 403

Examples

var r;
r = CRM.FindRecord('company','comp_companyid=30');
CompBlock = CRM.GetBlock('CompanyBoxLong');
CompBlock.CheckLocks = false;
if (CRM.Mode == 1)

{
 e = r.RecordLock();

 if (e != '')
{

 // Keep in view mode.
 CRM.Mode = 0;
 CRM.AddContent(e+'');
 }
 }
CRM.AddContent(CompBlock.Execute(r));
Response.Write(CRM.GetPage());

Locks the record. If the record is already locked, displays an error message and places the record
in view mode.

SaveChanges()

Saves changes made to the current record to the database.

This method refreshes the RecordObject to point back to the beginning of the selected record set.
You can't use it on a RecordObject where the same RecordObject is used in the condition in a while
loop. For a workaround, see example 2 below.

Examples

var Comp;
var block;
Comp = CRM.CreateRecord('company');
Comp.item('comp_Name') = '4D Communications International';
Comp.SaveChanges();
block = CRM.GetBlock("companygrid");
CRM.AddContent(block.execute(''));
Response.Write(CRM.GetPage());

Adds and saves a new record to the company table and displays in a list.

var companies;
var company;
companies = CRM.FindRecord("company","comp_name like 'Gate%'");
while (!companies.eof)

{

Sage CRM 2023 R2 - Developer Guide Page 331 of 403

 Response.Write(companies('comp_name')+'');
 Response.Flush();
 company = CRM.FindRecord('company', 'comp_companyid=' + companies.comp_companyid);
 company.comp_type = 'Member';
 company.SaveChanges();
 companies.NextRecord();
 }
Response.Write('End');

Demonstrates a workaround for using the SaveChanges() method in a loop.

SaveChangesNoTLS()

Saves changes made to the current record in the database. Does not trigger any table-level scripts
that exist for the table being updated.

Example

var Comp;
var block;
Comp = CRM.CreateRecord('company');
Comp.item('comp_Name') = '4D Communications International';
Comp.SaveChangesNoTLS();
block = CRM.GetBlock("companygrid");
CRM.AddContent(block.execute(''));
Response.Write(CRM.GetPage());

Adds and saves a new record to the company table. Does not trigger the company table-level script.

SetWorkflowInfo(vWorkflowName, vWorkflowState)

Saves a new record to a workflow.

This method works when the CRMRecord object is retrieved by using the CreateRecord
(TableName) method.

You can use the SetWorkflowInfo(vWorkflowName, vWorkflowState) method in one of the following
cases:

l When in the ArgObj property of an CRMEntryGroupBlock object.

l When the CRMRecord object is passed to the Execute(Arg) method of an
CRMEntryGroupBlock object.

Parameters

l vWorkflowName. Specifies a description of the workflow to which the record is saved. This
is the workflow description entered when the workflow was created.

Sage CRM 2023 R2 - Developer Guide Page 332 of 403

l vWorkflowState. Specifies the state in the workflow in which the record is to be saved.
This is the State Name value entered when the workflow state was created.

Examples

var NewOppo;
NewOppo = CRM.CreateRecord("Opportunity");
NewOppo.SetWorkflowInfo("SalesOpportunityWorkflow","Lead");
NewOppo.Item("oppo_description") = "My new Oppo";
NewOppo.SaveChanges();

Creates a new opportunity, saves it to the SalesOpportunityWorkflow, and assigns "In Progress"
state to the opportunity. When the opportunity is viewed, the valid actions for the assigned state
are available.

CRMRecord properties

l DeleteRecord. Marks a record for deletion.

l Eof Indicates whether the last record has been reached.

l IdField. Returns the name of the ID field (also known as primary key) for the current table
of the CRMRecord object.

l Item. Gets or sets the field value in its native format.

l ItemAsString. Gets the field value as a string.

l OrderBy. Specifies the field name by which to order record objects.

l RecordCount. Gets the number of records referred to by the object.

l RecordID. Gets the unique ID of the current record.

l XML. Generates the result as XML.

DeleteRecord

Marks a record for deletion.

The delete operation does not apply to the children of the record. As a result, the deletion of a
record may leave some orphaned child records. To identify orphaned records, run the following
SQL statement using either the CRMQuery object or CRMRecord object:

select bord_name, bord_companyupdatefieldname from custom_tables where bord_
companyupdatefieldname is not null

Values

This property can take one of the following values:

Sage CRM 2023 R2 - Developer Guide Page 333 of 403

l true. Marks the record for deletion. The deletion occurs when the SaveChanges() method is
called.

l false. Specifies that the record will not be deleted when the SaveChanges() method is
called.

Examples

var Comp;
Comp = CRM.FindRecord('company', "comp_name = 'Eurolandia'");
Comp.DeleteRecord = true;
Comp.SaveChanges();

Deletes a record representing the Eurolandia company in the company table.

Eof

Indicates whether the last record has been reached.

Return values

l true. Indicates that the last record has been reached or there are no records.

l false. Indicates that the last record hasn't been reached yet.

Examples

while (!record.eof)
{

 record.NextRecord();
 }

Retrieves the next record until the last record is reached.

IdField

Returns the name of the ID field (also known as primary key) for the current table of the
CRMRecord object.

Normally, this is the first field name in the table.

Example

var Comp;

Sage CRM 2023 R2 - Developer Guide Page 334 of 403

var idname;
Comp = CRM.FindRecord('company', "comp_name = 'Design Right Inc.'");
idname = Comp.IdField;
CRM.AddContent(Comp.item(idname));
Response.Write(CRM.GetPage());

Returns the ID field of a company named Design Right Inc.

Item

Gets or sets the field value in its native format.

Parameters

FieldName. Specifies the name of the field to get or set as the column in the table.

Example

record.Item("item");

record("item");

The two examples above perform the same action.

var Comp;
var Block;
Comp = CRM.CreateRecord('company');
Comp.item('comp_Name') = '3D Communications International';
Comp.SaveChanges();
Block = CRM.GetBlock("companygrid");
CRM.AddContent(Block.Execute(''));
Response.Write(CRM.GetPage());

Creates a new record in the Company table, names the company "3D Communications
International", and displays it in a company list.

ItemAsString

Gets the field value as a string.

This property uses metadata to convert the native field value to a string.

Parameters

FieldName. Specifies the name of the field.

Sage CRM 2023 R2 - Developer Guide Page 335 of 403

Examples

var Case;
Case = CRM.FindRecord('cases', "case_assigneduserid=5");
CRM.AddContent(Case.itemasstring("case_assigneduserid"));
Response.Write(CRM.GetPage());

Finds and displays the name of the user assigned to a case from userid.

OrderBy

Specifies the field name by which to order record objects.

This property accepts a string value. The specified value is used to build up an SQL statement for
the record. Use ASC or DESC parameters to order record objects in the ascending or descending
order.

Examples

var People;
People = CRM.FindRecord('Person','Pers_Deleted is null');
People.OrderBy = 'Pers_LastName, Pers_FirstName';
while (!People.Eof)

{
 CRM.AddContent(People.Pers_FirstName+' '+People.Pers_LastName+'');
 People.NextRecord();
 Response.Write(CRM.GetPage());
 }

Orders person records in descending order by the Pers_LastName and Pers_FirstName fields.

RecordCount

Gets the number of records referred to by the object. This property returns an integer value.

Examples

var Users;
Users = CRM.FindRecord('users','');
CRM.AddContent("There are " + Users.RecordCount+ " system users.");
Response.Write(CRM.GetPage());

Displays the number of current system users.

Sage CRM 2023 R2 - Developer Guide Page 336 of 403

RecordID

Gets the unique ID of the current record. The unique ID is created automatically when the record is
created.

Examples

Response.Write(Record.RecordID);

Gets the unique ID of the current record.

var Record;
Record = CRM.FindRecord("company","");
CRM.AddContent(Record("comp_name"));
CRM.AddContent(Record.RecordID);
Response.Write(CRM.GetPage());

Displays the name and identifier of the current company record.

XML

Generates the result as XML.

Example

var intRecordId = CRM.GetContextInfo("company","comp_companyid");
var myRecord = CRM.FindRecord("company, vsummarycompany","comp_companyid="+intRecordId);
Response.Write(myRecord.xml);

Sage CRM 2023 R2 - Developer Guide Page 337 of 403

CRMSelfService object
The CRMSelfService object provides access to the CRM database and to many CRM object methods,
from outside the CRM application. Use it in a web application to allow visitors to your website
access, and interact with, aspects of your CRM system.

For example, visitors to your website could log cases or directly update their contact information.
These visitors don't have to be CRM users, but could be People in your CRM database.

CRMSelfService object enables authenticated and anonymous visitors to access varying levels of
CRM data in View Only mode.

You can install a sample Self Service application as part of the CRM setup if your CRM license key
includes Self Service. For more information about this application, see the Self Service section in
the Sage CRM Administrator Help and User Help.

Although Self Service is a COM-based API, it's separate to the main ASP API for building
Application Extensions, and uses blocks in a different way. The Self Service environment doesn't
have a logon that generates a CRM Session ID (SID) or context. So you can't use API objects or
methods that rely on a SID to build URLs. For example, CRM.Button(), CRM.GetTabs(), and CRM.URL().

The following syntax results in an error:

CRM.AddContent(myBlock.Execute(Arg));
Response.Write(CRM.GetPage());
Response.Write(myBlock.Execute(Arg));

l CRMSelfService methods

l CRMSelfService properties

CRMSelfService methods

l EndSSSession(QueryString, ContentString, Cookie). Terminates the Self Service session
and resets the Sage CRM cookies.

l Init(QueryString, ContentString, Cookie). Initializes the Self Service session and Sage
CRM cookies.

EndSSSession(QueryString, ContentString, Cookie)

Terminates the Self Service session and resets the Sage CRM cookies.

Sage CRM 2023 R2 - Developer Guide Page 338 of 403

Parameters

l QueryString. Specifies querystring for the current page. Request.Querystring.

l ContentString. Specifies form string for the current page. Request.Form.

l Cookie. Specifies a reference to the Sage CRM cookies object. Request.Cookies("CRM").

Examples

CRM.EndSSSession(Request.Querystring, Request.Form, Request.Cookies("CRM"));
Response.Write("The following user has been logged out:
"+CRM.VisitorInfo("visi_FirstName")+" "+CRM.VisitorInfo("visi_LastName"));

Terminates the Self Service session, resets Sage CRM cookies, and displays a log out message to
the user.

Init(QueryString, ContentString, Cookie)

Initializes the Self Service session and Sage CRM cookies.

The CRMSelfService object must be initialized and connected to the database before it can be
used.

If you've installed the CRM Self Service Demo site, you'll see the Init method called in the
ewaress.js file. This file can be included at the top of each of your Self Service ASP pages by using
the following syntax:

<!-- #include file ="ewaress.js" -->

Parameters

l QueryString. Specifies the query string.

l ContentString. Specifies the content string, usually a form.

l Cookie. Specifies the initial Sage CRM cookie.

Examples

var CRM;
CRM = Server.CreateObject("eWare.eWareSelfService");
CRM.init(Request.Querystring,Request.Form,Request.Cookies("CRM"));
Response.Expires = -1;

Initializes the CRMSelfService object and Sage CRM cookies.

Sage CRM 2023 R2 - Developer Guide Page 339 of 403

CRMSelfService properties

l Authenticated. Gets a value indicating whether the current user is authenticated.

l AuthenticationError. Sets an authentication error to display.

l VisitorInfo. Gets or sets the value associated with a key for the current authenticated
visitor.

Authenticated

Gets a value indicating whether the current user is authenticated.

Parameters

None

Return value

l true. Indicates that the user is authenticated.

l false. Indicates that the current user is not authenticated.

Examples

if (CRM.Authenticated)
{

 // This could be any function. getmembermenu();
 }
else

{
 Response.Redirect("index.asp");
 }

Allows an authenticated user to access a member menu. Takes unauthenticated users back to an
index page.

AuthenticationError

Sets an authentication error to display.

Parameters

None

Sage CRM 2023 R2 - Developer Guide Page 340 of 403

Examples

if (CRM.Authenticated)
{

 // Perform action for authenticated users
 }

else
{

 Response.Write('You are not a valid user' + CRM.AuthenticationError);
 }

VisitorInfo

Gets or sets the value associated with a key for the current authenticated visitor.

The key can be a column on the visitor table beginning with "Visi", or any text.

Parameters

Key. Specifies either a column in the visitor table or a string value.

Examples

if((CRM.Authenticated)&&(CRM.VisitorInfo("Visi_NotificationCriteria")!=""))
{

 // This could be any method.getmembermenu();
 };

Grants access to any authenticated visitor who has submitted any notification criteria.

Sage CRM 2023 R2 - Developer Guide Page 341 of 403

CRMTargetLists object
Use the CRMTargetLists object to create and save a target list in conjunction with
CRMTargetListFields and CRMTargetListField. The target list must be based on a Company, Person,
or Lead.

In Sage CRM version 7.2 and later, target lists are called groups. To ensure that legacy code works
with new installations, the term target lists is maintained in the API terminology.

l CRMTargetLists methods

l CRMTargetLists properties

l Example: Creating and saving a Target list

l Example: Retrieving a Target list

CRMTargetLists methods

l Save(). Saves the Target list.

l Include(ATargetID). Includes a target in the Target list.

l Exclude(ATargetID). Excludes a target from the Target list.

l Retrieve(). Retrieves a target from the Target list.

Save()

Saves the Target list.

If the TargetListID property is set to zero, a new Target list is saved. Otherwise, the Target list
specified in the TargetListID property is updated.

Parameters

None

Examples

See the following topics:

l Example: Creating and saving a Target list

l Example: Retrieving a Target list

Include(ATargetID)

Includes a target in the Target list.

Sage CRM 2023 R2 - Developer Guide Page 342 of 403

Parameters

None

Examples

See the following topics:

l Example: Creating and saving a Target list

l Example: Retrieving a Target list

Exclude(ATargetID)

Excludes a target from the Target list.

Parameters

ATargetID. Specifies the ID of the target to exclude. This parameter accepts an integer value.

Examples

See the following topics:

l Example: Creating and saving a Target list

l Example: Retrieving a Target list

Retrieve()

Retrieves a target from the Target list.

Parameters

None

Examples

See the following topics:

l Example: Creating and saving a Target list

l Example: Retrieving a Target list

Sage CRM 2023 R2 - Developer Guide Page 343 of 403

CRMTargetLists properties

l Category. Specifies the category of the Target list.

l Description. Specifies the description of the Target list.

l Fields. Specifies the list of display fields.

l GroupAccessLevel. Specifies who can access the Target list.

l IsFixedGroup. Specifies whether the Target list is a fixed group or a dynamic group.

l IsNewGroupFromFind. Specifies whether the Target list is a group or a saved search from
Find.

l Name. Specifies the name of the Target list.

l OrderByFields. Specifies the list of order by fields.

l TargetListID. Specifies the ID of the Target list.

l ViewName. Specifies the view used by the Target list.

l WhereClause. Filters the list of targets.

Category

Specifies the category of the Target list.

Values

String

Examples

See the following topics:

l Example: Creating and saving a Target list

l Example: Retrieving a Target list

Description

Specifies the description of the Target list.

Values

String

Examples

See the following topics:

Sage CRM 2023 R2 - Developer Guide Page 344 of 403

l Example: Creating and saving a Target list

l Example: Retrieving a Target list

Fields

Specifies the list of display fields.

Value

CRMTargetListFields object (read-only)

Examples

See the following topics:

l Example: Creating and saving a Target list

l Example: Retrieving a Target list

GroupAccessLevel

Specifies who can access the Target list. This property is applicable only if the Target list is a
group; for more information, see IsNewGroupFromFind

Values

This property can take one of the following values:

l <a positive integer>. Specifies the ID of the user who can access the group.

l 0. Specifies that all users, info managers, and system administrators can access the group.

l -1. Specifies that only info managers and system administrators can access the group.

Examples

See Example: Creating and saving a Target list.

IsFixedGroup

Specifies whether the Target list is a fixed group or a dynamic group. This property is applicable
only if the Target list is a group; for more information, see IsNewGroupFromFind

Values

This property can take one of the following values:

Sage CRM 2023 R2 - Developer Guide Page 345 of 403

l true. The group is fixed.

l false. The group is dynamic.

Examples

See Example: Creating and saving a Target list.

IsNewGroupFromFind

Specifies whether the Target list is a group or a saved search from Find.

Values

This property can take one of the following values:

l true. The Target list is a group.

l false. The Target list is a saved search.

Examples

See Example: Creating and saving a Target list.

Name

Specifies the name of the Target list.

Values

String

Examples

See the following topics:

l Example: Creating and saving a Target list

l Example: Retrieving a Target list

OrderByFields

Specifies the list of order by fields.

Value

CRMTargetListFields object (read-only)

Sage CRM 2023 R2 - Developer Guide Page 346 of 403

Examples

See the following topics:

l Example: Creating and saving a Target list

l Example: Retrieving a Target list

TargetListID

Specifies the ID of the Target list.

Values

Integer

Examples

See the following topics:

l Example: Creating and saving a Target list

l Example: Retrieving a Target list

ViewName

Specifies the view used by the Target list.

Values

String

Examples

See the following topics:

l Example: Creating and saving a Target list

l Example: Retrieving a Target list

WhereClause

Filters the list of targets.

This property is mandatory when you create or modify a Target list.

Values

String

Sage CRM 2023 R2 - Developer Guide Page 347 of 403

Examples

See the following topics:

l Example: Creating and saving a Target list

l Example: Retrieving a Target list

Example: Creating and saving a Target list

// Shows an example of creating and saving a target list
// All steps are compulsory and should be in this order

<!-- #include file ="sagecrm.js" -->
<%

TargetBlock = CRM.TargetLists;

// Get the TargetBlock COM Object from the CRM base objectTargetBlock.
TargetListID = 0;

// Set the ID to zero, to indicate a new target listTargetBlock.
Category = "Person";

// Set the category. Other valid categories are Company and LeadTargetBlock.
Name = "COM List 1";

// Set the name of the target list, should be unique
TargetBlock.IsNewGroupFromFind = true;

// Set the target list to be a group rather than a saved search
TargetBlock.GroupAccessLevel = 0;

// Enable all users to access the group
TargetBlock.IsFixedGroup = false;

// Specify that the group is dynamic
TargetBlock.ViewName = "vTargetListPerson";

// Set the view to be usedTargetBlock.
WhereClause = "Addr_City = N'London'";

// If required, specify a where clause.
// You must specify at least one display field. All fields must be returned by the view.
TargetField = TargetBlock.Fields.New();

// Create a new display fieldTargetField.
DataField = "Comp_Name";

// Specify its database field name
TargetField = TargetBlock.Fields.New();

// Create a second display name, optional
TargetField.DataField = "Pers_LastName";
TargetField = TargetBlock.Fields.New();

Sage CRM 2023 R2 - Developer Guide Page 348 of 403

// Create a third display field, optional
TargetField.DataField = "Pers_FirstName";

// Add more fields as desired. You may add order by fields to sort the target
listTargetField = TargetBlock.OrderByFields.New();

// Create a new order by field
TargetField.DataField = "Pers_LastName";

// Specify its database field name
TargetQuery = TargetBlock.Retrieve();

// Create and return the target list based on the above settings
// This demonstrates cycling through the returned targets, and setting every tenth target to be
excluded
while (!TargetQuery.EOF)

{
 I = 1;
 while ((!TargetQuery.EOF) && (I < 10))

{
 TargetQuery.Next();
 I++;
 }
 if (!TargetQuery.EOF)

{
 j = TargetQuery.FieldValue("Pers_PersonID");
 TargetBlock.Exclude(j);
 }
 }

// For the moment, we always return to the Actions page whether successful or not.
// 580 is the action number to go back to the target list browser page
// 585 is the action number to go back to the target list actions page
if (TargetBlock.Save())

// Save the target list
{

 Response.Redirect(CRM.URL(580));
 }

else
{

 Response.Redirect(CRM.URL(580));
 }

%>

Example: Retrieving a Target list

// This shows an example of retrieving a target list, cycling through the targets
// and marking any excluded targets as being included

<!-- #include file ="sagecrm.js" -->
<%

Sage CRM 2023 R2 - Developer Guide Page 349 of 403

TargetBlock = CRM.TargetLists;
// Get the TargetBlock COM Object from the CRM base object

TargetBlock.TargetListID = Request.QueryString("Key25");
// Set the id that we want to look for

TargetQuery = TargetBlock.Retrieve();
// Retrieve the target list

while (!TargetQuery.EOF)
{

 if (TargetQuery.FieldValue("DData_ShortStr") == "Excluded")
 // If this target is excluded, then

{
 TargetBlock.Include(TargetQuery.FieldValue("Pers_PersonID"));
 // Include this target
 // This particular target list is a Person target list
 // If a Company target list, then use the Comp_CompanyID field
 // If a Lead target list, then use the Lead_LeadID field

 }

 TargetQuery.Next();
 // Move to next target

 }

 // For the moment, we always return to the Actions page whether successful or not.
 // 580 is the action number to go back to the target list browser page
 // 585 is the action number to go back to the target list actions page

if (TargetBlock.Save())
{

 // Save the target list
 Response.Redirect(CRM.URL(585));
 }

else
{

 Response.Redirect(CRM.URL(585));
 }

%>

Sage CRM 2023 R2 - Developer Guide Page 350 of 403

CRMTargetListField object
Use the CRMTargetListField objects to define fields to be included in a target list. You must
specify the actual field names in the CRM database.

In Sage CRM version 7.2 and later, target lists are called groups. To ensure that legacy code works
with new installations, the term target lists is maintained in the API terminology.

l CRMTargetListField properties

CRMTargetListField properties

DataField. Specifies the name of the field to display on the Target list.

DataField

Specifies the name of the field to display on the Target list.

Values

String

Examples

See the following topics:

l Example: Creating and saving a Target list

l Example: Retrieving a Target list

Sage CRM 2023 R2 - Developer Guide Page 351 of 403

CRMTargetListFields object
Use the CRMTargetListFields object to set up a list of CRMTargetListField objects. There are two
instances of the object: one for display fields and one for order fields.

In Sage CRM version 7.2 and later, target lists are called groups. To ensure that legacy code works
with new installations, the term target lists is maintained in the API terminology.

l CRMTargetListFields methods

l CRMTargetListFields properties

CRMTargetListFields methods

l New(CRMTargetListField). Creates and returns a new field.

l Delete(Index). Deletes the specified field.

New(CRMTargetListField)

Creates and returns a new field.

Values

CRMTargetListField object

Examples

See the following topics:

l Example: Creating and saving a Target list

l Example: Retrieving a Target list

Delete(Index)

Deletes the specified field.

Values

Index. Specifies the index of the field to delete.

See the following topics:

Sage CRM 2023 R2 - Developer Guide Page 352 of 403

l Example: Creating and saving a Target list

l Example: Retrieving a Target list

CRMTargetListFields properties

l Parent. Specifies the parent CRMTargetLists object.

l Count. Specifies the number of new fields in the list.

l Item. Returns the field specified by the index (an integer).

Parent

Specifies the parent CRMTargetLists object.

Value

CRMTargetLists object (read-only)

Examples

See the following topics:

l Example: Creating and saving a Target list

l Example: Retrieving a Target list

Count

Specifies the number of new fields in the list.

Values

Integer (read-only)

Examples

See the following topics:

l Example: Creating and saving a Target list

l Example: Retrieving a Target list

Item

Returns the field specified by the index (an integer).

Sage CRM 2023 R2 - Developer Guide Page 353 of 403

Values

CRMTargetLists object (read-only)

Examples

See the following topics:

l Example: Creating and saving a Target list

l Example: Retrieving a Target list

Sage CRM 2023 R2 - Developer Guide Page 354 of 403

Email object
Use the Email object to customize scripts deployed by E-mail Management. The Email object
provides access to an email through its properties and methods.

The object is passed into the script by default as the Email object but can also be accessed from
the MsgHandler Object as follows:

myemail = MsgHandler.msg

For more information about E-mail Management, see the System Administrator Help.

l Email methods

l Email object properties

Email methods

l Send(). Sends an email using the contents of the Email object.

l AddFile(Value). Adds a file as an attachment to the Email object.

l Clear(). Clears the contents of the Email object.

l Header(Value). Returns any named header value from the email.

Send()

Sends an email using the contents of the Email object.

Parameters

None

Examples

email.Send();

AddFile(Value)

Adds a file as an attachment to the Email object.

Sage CRM 2023 R2 - Developer Guide Page 355 of 403

Parameters

Value. Specifies the full path to the file to be attached.

Return value

l true. Indicates that the specified file exists.

l false. Indicates that the specified file doesn't exist.

Examples

email.AddFile('C:\MyFolder\MyWordFile.docx');

Clear()

Clears the contents of the Email object. Typically use this before you want to send a new email.

Parameters

None

Examples

email.Clear();

Header(Value)

Returns any named header value from the email. Returns a blank string if the header value does
not exist.

Parameters

Value. Specifies the name of the header value to retrieve.

Examples

comm("comm_replyto") = email.Header("Reply_To");

Sage CRM 2023 R2 - Developer Guide Page 356 of 403

Email object properties

l Body. Specifies the body text of the email message.

l IsHTML. Sets a format for the email message.

l Subject. Sets the email message subject.

l Priority. Sets the email message priority.

l Recipients. Gets the recipients of the email message specified in the To field.

l SenderName. Gets or sets the name of the email sender.

l SenderAddress. Gets or sets the email address of the sender.

l DeliveryTime. Specifies the time and date when the email message was delivered to the
inbox.

l Attachments. Gets the email message attachments.

l BCC. Gets the email addresses in the BCC field of the email message.

l CC. Gets the email addresses in the CC field of the email message.

Body

Gets or sets the body text of the email message.

Values

String

Examples

comm("Comm_Email") = eMail.Body

IsHTML

Sets a format for the email message.

Values

l true. Specifies to use HTML format.

l false. Specifies to use text format.

Sage CRM 2023 R2 - Developer Guide Page 357 of 403

Examples

eMail.IsHTML = true;

Sets the email message format to HTML.

Subject

Gets or sets the email message subject.

Values

String

Examples

comm("Comm_Note") = eMail.Subject;

Priority

Sets the email message priority.

Values

This property can take one of the following values:

l 0. Low priority.

l 1. Normal priority.

l 2. High priority.

Examples

var prHigh;
phHigh = 2;
eMail.Priority = prHigh;

Sets email message priority to high.

Recipients

Gets the recipients of the email message specified in the To field.

Sage CRM 2023 R2 - Developer Guide Page 358 of 403

Values

AddressList object

Examples

var MyAddressList;
var singleaddress;
MyAddressList = email.Recipients;

// Get the first email address from the list.
singleaddress = MyAddressList.Items(0).Address;

Returns the first email address from the To field.

SenderName

Gets or sets the name of the email sender.

Values

String

Examples

comm("comm_from") = "\""+eMail.SenderName + "\" " + "<" + eMail.SenderAddress + "> ";

SenderAddress

Gets or sets the email address of the sender.

Values

String

Examples

comm("comm_from") = "\""+eMail.SenderName + "\" " + "<" + eMail.SenderAddress + "> ";

DeliveryTime

Specifies the time and date when the email message was delivered to the inbox.

Sage CRM 2023 R2 - Developer Guide Page 359 of 403

Values

None

Examples

var commdate;
commdate = new Date(eMail.DeliveryTime);
comm("Comm_datetime") = commdate.getVarDate();

Attachments

Gets the email message attachments.

Values

AttachmentList object

Examples

var myAttachments;
myAttachments = email.Attachments;
var myAttachment;myAttachment = eMail.Attachments.Items(1);

BCC

Gets the email addresses in the BCC field of the email message.

Values

AttachmentList object

Examples

var singleaddress;
singleaddress = email.BCC.Items(0).Address;

CC

Gets the email addresses in the CC field of the email message.

Sage CRM 2023 R2 - Developer Guide Page 360 of 403

Values

AttachmentList object

Examples

var singleaddress;
singleaddress = email.CC.Items(0).Address;

Sage CRM 2023 R2 - Developer Guide Page 361 of 403

MailAddress object
Use the MailAddress object to customize scripts deployed by E-mail Management. The MailAddress
object provides access to an individual address from the AddressList object.

Use the following syntax to retrieve a MailAddress object:

var myaddress;
myaddress = eMail.CC.Items(1);

For more information about E-mail Management, see the System Administrator Guide or Help.

l MailAddress properties

MailAddress properties

l Name. Gets or sets the user-friendly name associated with the email address.

l Address. Gets or sets the email address.

Name

Gets or sets the user-friendly name associated with the email address.

Values

String

Examples

var FromName;
FromName = eMail.CC.Items(1).Name;

Address

Gets or sets the email address.

Values

String

Sage CRM 2023 R2 - Developer Guide Page 362 of 403

Examples

var FromAddress;
FromAddress = eMail.CC.Items(1).Address;

Sage CRM 2023 R2 - Developer Guide Page 363 of 403

MsgHandler object
Use the MsgHandler object customize scripts deployed by E-mail Management. It provides basic
access to the Email object and functionality for the system. It's the top level object within E-mail
Management and scripting. It's passed into the script at run time.

For more information on E-mail Management, see the System Administrator Help.

l MsgHandler methods

l MsgHandler properties

MsgHandler methods

l Log(value). Sets the message to write to a log file in the Sage CRM installation folder.

l MailAdmin(Subject, Body). Sends an email to the system administrator.

l GetUniqueFileName(Path, FileName). Checks if the specified file exists.

Log(value)

Sets the message to write to a log file in the Sage CRM installation folder. This method is only
available when the Debug property is set to true.

Parameters

String. Specifies the message to write.

Examples

MsgHandler.Debug = true;
MsgHandler.Log("testing application");

MailAdmin(Subject, Body)

Sends an email to the system administrator. This method uses the email address specified in the
EmSe_AdminAddress in the custom_emailaddress table.

Parameters

l Subject. Specifies the email message subject. This parameter accepts a string value.

l Body. Specifies the email message body text. This parameter accepts a string value.

Sage CRM 2023 R2 - Developer Guide Page 364 of 403

Examples

var sSubject;
var Body;
sSubject = "Unknown customer";
sBody = "An unknown customer attempted to mail the service";
MsgHandler.MailAdmin(sSubject,sBody);

GetUniqueFileName(Path, FileName)

Checks if the specified file exists.

Return value

If the file exists, this method returns the name of the file.
If the file does not exist, this method returns the next valid name for the file.

Parameters

l Path. Specifies the file path.

l Filename. Specifies the file name.

Examples

var NewName;
NewName = MsgHandler.GetUniqueFileName(libdir, AttItem.Name);
AttItem.SaveAs(NewName, libdir);

MsgHandler properties

l Msg. Returns the Email object.

l Debug. Sets whether to write messages sent via the Log(value) method to the log file.

l EmailAddress. Gets the email address of the service.

Msg

Returns the Email object. Do not access this parameter from the script, as it's already been
passed in as the Email object.

Sage CRM 2023 R2 - Developer Guide Page 365 of 403

Values

Email object

Examples

var myemail;
myemail = MsgHandler.msg;

Debug

Sets whether to write messages sent via the Log(value) method to the log file.

Values

This property can take one of the following values:

l true. Specifies to write the messages to the log file.

l false. Specifies not to write the messages to the log file.

Examples

MsgHandler.Debug = true;

Writes messages to the log file.

EmailAddress

Gets the email address of the service.

Values

String

Examples

var serviceaddress;
serviceaddress = MsgHandler.EmailAddress;

Sage CRM 2023 R2 - Developer Guide Page 366 of 403

Component Manager methods
This section describes the methods you can use when modifying generated script files in the
Component Manager. For more information about the Component Manager, see Transferring
customizations to another Sage CRM instance.

The methods are grouped by the action they perform.

l Add methods

l Copy methods

l Create methods

l Delete and Drop methods

l Get methods

l SearchAndReplace methods

l Other methods

Sage CRM 2023 R2 - Developer Guide Page 367 of 403

Add methods
l AddCoachingCaptions method. Adds a new coaching caption.

l AddColumn method. Adds a column to an existing table.

l AddCustom_Captions method. Adds or modifies translations.

l AddCustom_ContainerItems method. Adds blocks to a container.

l AddCustom_Data method. Adds or updates data in the specified table.

l AddCustom_Databases method. Adds links to external databases.

l AddCustom_Edits method. Adds or modifies the properties of an entity field.

l AddCustom_Lists method. Adds columns to a customized List group.

l AddCustom_Relationship method. Add entity relationships for SData provider.

l AddCustom_Report method. Creates a report.

l AddCustom_ReportBand method. Adds a report band.

l AddCustom_ReportChart method. Adds a chart to a report.

l AddCustom_ReportField method. Adds a report field.

l AddCustom_ReportGroup method. Adds a report group.

l AddCustom_ScreenObjects method. Adds a new custom screen object, such as list,
screen, search screen, tab group, filter box, or block.

l AddCustom_Screens method. Adds or modifies a field on a screen.

l AddCustom_Scripts method. Adds a table- or entity-level script.

l AddCustom_Tables method. Adds a table.

l AddCustom_Tabs method. Adds or modifies a tab in a tab group.

l AddLPCategory method. Adds a dashboard category.

l AddLPGadget method. Adds a dashboard gadget.

l AddLPLayout method. Adds a dashboard.

l AddLPUserLayout method. Assigns a dashboard template to a user.

l AddMessage method. Sets the message to show to a user while the component is being
installed.

l AddProduct method. Adds a product.

l AddView method. Adds a view.

Sage CRM 2023 R2 - Developer Guide Page 368 of 403

AddCoachingCaptions method

Adds a new coaching caption.

Parameters

l Coch_ActionID. Specifies the action number of the caption.

l Coch_CaptCode. Specifies the caption code for the caption.

Return value

ID of the added coaching caption.

AddColumn method

Adds a column to an existing table.

Parameters

l Col_TableName. Specifies the name of the table to which the column is to be added.

l Col_ColumnName. Specifies the column name.

l Col_Type. Specifies the entry type for the column.

l Col_Size. Specifies the column size (in characters) for certain field types, for example, text
fields.

l Col_AllowNulls. Specifies if the column can take null values. Can take one of the
following values:

l True. The column can take null values.

l False. The column doesn't accept null values.
l Col_IsUnique. Specifies if the values in the column must be unique. Can take one of the
following values:

l True Values in the column must be unique.

l False. Values in the column do not have to be unique.
l Col_IsIdentity. Indicates whether the column should be created as an auto-incrementing
field. Boolean.

Return value

None

Sage CRM 2023 R2 - Developer Guide Page 369 of 403

AddCustom_Captions method

Adds or modifies translations in Sage CRM.

Parameters

l Capt_FamilyType. Specifies the family type to which the caption belongs. For example,
Tags.

l Capt_Family. Specifies the family for the caption.

l Capt_Code. Specifies the code for the caption. Captions are identified by their family and
code.

l Capt_Order. Specifies the order that this should appear in.

l Capt_US. Specifies the US English translation.

l Capt_UK. Specifies the UK English translation.

l Capt_FR. Specifies the French translation.

l Capt_DE. Specifies the German translation.

l Capt_ES. Specifies the Spanish translation.

l Capt_DU. Specifies the Dutch translation.

l Capt_JP. Specifies the Japanese translation.

l Capt_IntegrationID. Optional. Specifies the identifier of the integration to which the
caption belongs. Can only be used within the integration module.

Return value

ID of the added record.

AddCustom_ContainerItems method

Adds blocks to a container.

Parameters

l Cont_Container. Specifies the name of the container.

l Cont_BlockName. Specifies the name of the block.

l Cont_Order. SYSINT.

l Cont_NewLine. Set to 1 for new line and 0 for the same line.

l Cont_Width. Sets the block width.

Sage CRM 2023 R2 - Developer Guide Page 370 of 403

l Cont_Height. Sets the block height.

l Cont_Deleted. Flag to indicate if record is deleted.

Return value

ID of the added record.

AddCustom_Data method

Adds or updates data in the specified database table.

Note that this method may not work to update certain custom tables, because updates to the
foreign key are not set automatically. The affected custom tables include Custom_Edits, Custom_
Views, Custom_ScreenObjects, Custom_List, Custom_ContainerItems, Custom_Tabs, and Custom_
Screen.

Parameters

l TableName. Specifies the name of the table in which you want to add or update data.

l TablePrefix. Specifies the table prefix.

l IdColumn. Specifies the name of the table column that holds the ID.

l Fields. Specifies the fields to update. When specifying multiple fields, use a comma as a
separator.

l Values. Specifies the values to assign to the fields. When specifying multiple values, use a
comma as a separator. The list of values must match the list of fields provided in the
Fields parameter. To insert the value into a string field, surround the value with double
quotes.
You can use the following variables in place of actual values:

l ISBLANK. Inserts a blank space into a text field (identical to setting the value to
"").

l ISNULL. Marks column as NULL.

l ISNOW. Inserts the current date and time up to the nearest second.
l KeyFields. Specifies the fields in the Fields parameter whose values you want to use to
uniquely identify records. If a record with the specified ID exists, it will be updated.
Otherwise, the record will be created.
To specify a field, enter the index the field has in the Fields parameter. When specifying
multiple fields, use a comma as a separator.

Return value

None

Sage CRM 2023 R2 - Developer Guide Page 371 of 403

Example

AddCustom_Data('Custom_Captions', 'Capt', 'Capt_CaptionId',
'Capt_FamilyType,Capt_Family,Capt_Code,Capt_DU,CreatedDate',
'"Tags","ColNames","Comp_Name","Company",ISNOW', '1,2,3');

AddCustom_Databases method

Adds links to external databases.

Parameters

l Cdbo_Description. Specifies the database description.

l Cdbo_AliasName. Specifies the database alias.

l Cdbo_UserName. Specifies the user name of the account with which to connect to the
database.

l Cdbo_Password. Specifies the password that matches the user name in the Cdbo_
UserName parameter.

l Cdbo_Deleted. Indicates if the record is deleted. Leave as null.

l Cdbo_DriverName. Specifies the driver to access the database.

l Cdbo_ServerName. Specifies the name of the server that hosts the database.

l Cdbo_DatabaseName. Specifies the database name.

Return value

ID of the added record.

AddCustom_Edits method

Adds or modifies the properties of an entity field.

Parameters

l ColP_Entity. Specifies the entity name.

l ColP_ColName. Specifies the field name.

l ColP_EntryType. Specifies the entry type. For a list of possible entry types, see
EntryType.

l ColP_DefaultType. Specifies the default type of the column.

Sage CRM 2023 R2 - Developer Guide Page 372 of 403

l ColP_DefaultValue. Specifies the default value, if any, for the default type of the column.

l ColP_EntrySize. Specifies the number of visible characters when editing the column.

l ColP_LookUpFamily. Specifies a string with the look-up family name (if applicable to the
entry type).

l ColP_LookUpWidth. Specifies the column width.

l ColP_Required. Specifies if the column is required. This parameter can take one of the
following values:

l Y. The column is required.

l N. The column is optional.
l ColP_AllowEdit. Specifies if the column is writable. This parameter can take one of the
following values:

l Y. The column is writable.

l N. The column is read-only.
l ColP_SearchDefaultValue. Specifies the default search value (if applicable to the entry
type).

l ColP_System. Specifies if the column is system. This parameter can take one of the
following values:

l Y. The column is system and does not appear on customization screens.

l N. The column is non-system and is available on customization screens.

Return value

ID of the added record.

AddCustom_Lists method

Adds columns to a customized List group.

Parameters

l GriP_GridNam. Specifies the name of the grid into which to add the column.

l GriP_Order. Specifies the order in which the column appears in the grid.

l GriP_ColName. Specifies the column name.

l GriP_AllowRemove. Specifies if the column is removable. This parameter can take one of
the following values:

l Y. The column is removable.

l N. The column is not removable.

Sage CRM 2023 R2 - Developer Guide Page 373 of 403

l GriP_AllowOrderBy. Specifies if the column can be used to order the list. This parameter
can take one of the following values:

l Y. The column can order the list.

l N. The column cannot order the list.
l GriP_OrderByDesc. Sets the default sort mode for ordering items in the column.

l Y. The default mode is descending.

l N. The default mode is ascending.
l GriP_Alignment. Sets the alignment for the text in the column. This parameter can take
one of the following values:

l CENTER (or NULL). Center text.

l LEFT. Align text to the left.

l RIGHT. Align text to the right.
l GriP_Jump. Specifies if the column can contain a hyperlink to another page.

l GriP_ShowHeading. Specifies if the column heading is displayed in the list. This
parameter can take one of the following values:

l Y. Shows the column heading in the list.

l N. Hides the column heading in the list.
l GriP_ShowSelectAsGif. Specifies if this column should show as a GIF. This parameter can
take one of the following values:

l Y. Shows the column as a GIF.

l N (or NULL). Doesn't show the column as a GIF.
l GriP_CustomAction. Specifies the name of page to hyperlink to if the GriP_Jump
parameter is set to Custom.

l GriP_CustomIdField. Specifies the name of field to use as the ID field if the GriP_Jump
is set to Custom.

l GriP_DeviceID. Specifies the device ID of the list. The device ID is taken from the Devices
table.

l Grip_CreateScript. Allows you to enter a create script for a column. The default value is
blank.

Return value

ID of the added record.

AddCustom_Relationship method

Add entity relationships for SData provider.

Sage CRM 2023 R2 - Developer Guide Page 374 of 403

Parameters

l TableName. String.

l ColumnName. String.

l TableNameRelated. String.

l ColumnNameRelated. String.

l RelationshipType. Integer.

l IsCollection. Boolean.

l LinkTableName. String.

l LinkColumnName. String.

l LinkColumnNameRelated. String.

Return value

AddCustom_Report method

Creates a report.

Parameters

l Repo_Category. String.

l Repo_Name. String.

l Repo_Title. String.

l Repo_Description. String.

l Repo_Bands. Integer.

l Repo_ExportAsXML. String.

l Repo_FooterCentrePageData. String.

l Repo_FooterLeftPageData. String.

l Repo_FooterRightPageData. String.

l Repo_HeaderCentrePageData. String.

l Repo_HeaderLeftPageData. String.

l Repo_HeaderRightPageData. String.

l Repo_FooterCentrePageDataImage. String.

Sage CRM 2023 R2 - Developer Guide Page 375 of 403

l Repo_FooterLeftPageDataImage. String.

l Repo_FooterRightPageDataImage. String.

l Repo_HeaderCentrePageDataImage. String.

l Repo_HeaderLeftPageDataImage. String.

l Repo_HeaderRightPageDataImage. String.

l Repo_PrintOptions. Integer.

l Repo_UserFilterField. String.

l Repo_PrivateUserID. Integer.

l Repo_ReportStyle. String.

Return value

AddCustom_ReportBand method

Adds a report band.

Parameter

l ReBa_ReportID. Integer.

l ReBa_DetailLevel. Integer.

l ReBa_CrossTabField. String.

l ReBa_DisplayOptions. Integer.

l ReBa_ViewName. String.

l ReBa_WhereClause. String.

l ReBa_DetailLinkField. String.

l ReBa_MasterLinkField. String.

Return value

AddCustom_ReportChart method

Adds a chart to a report.

Sage CRM 2023 R2 - Developer Guide Page 376 of 403

Parameters

l ReCh_ReportID. Integer.

l ReCh_Options. Integer.

l ReCh_BackImageName. String.

l ReCh_BarStyle. String.

l ReCh_BottomCaption. String.

l ReCh_BottomDateFunction. String.

l ReCh_BottomFieldName. String.

l ReCh_Elevation. Integer.

l ReCh_GradientEndColour. String.

l ReCh_GradientStartColour. String.

l ReCh_Height. Integer.

l ReCh_HorizontalOffset. Integer.

l ReCh_LeftCaption. String.

l ReCh_LeftFieldName. String.

l ReCh_LeftFunction. String.

l ReCh_LegendAlignment. String.

l ReCh_MarksStyle. String.

l ReCh_Perspective. Integer.

l ReCh_PieRotation. Integer.

l ReCh_Rotation. Integer.

l ReCh_Style. String.

l ReCh_Tilt. Integer.

l ReCh_VerticalOffset. Integer.

l ReCh_Width. Integer.

l ReCh_Zoom. Integer

Return value

AddCustom_ReportField method

Adds a report field.

Sage CRM 2023 R2 - Developer Guide Page 377 of 403

Parameters

l ReFi_ReportBandID. Integer.

l ReFi_Alignment. String.

l ReFi_DataField. String.

l ReFi_UsageType. String.

l ReFi_DisplayOrder. Integer.

l ReFi_JumpDestination. String.

l ReFi_JumpFileName. String.

l ReFi_JumpIdentifier. String.

l ReFi_Mask. String.

l ReFi_TotalsType. String.

l ReFi_SortOrder. Integer.

Return value

AddCustom_ReportGroup method

Adds a report group.

Parameters

l ReGr_ReportBandID. Integer.

l ReGr_GroupByField. String.

l ReGr_GroupOrder. Integer.

l ReGr_HasFooter. String.

l ReGr_JumpDestination. String.

l ReGr_JumpFileName. String.

l ReGr_JumpIdentifier. String.

Return value

Sage CRM 2023 R2 - Developer Guide Page 378 of 403

AddCustom_ScreenObjects method

Adds a new custom screen object, such as list, screen, search screen, tab group, filter box, or block.

Parameters

l CObj_Name. Specifies the name of the custom screen object. This name must be unique.

l CObj_Type. Specifies the type of the custom object. This parameter can take one of the
following values:

l List

l Screen

l SearchScreen

l TabGroup

l FilterBox

l Block
l CObj_EntityName. Specifies the name of the entity on which the custom object is based.

l CObj_AllowDelete. Specifies if a user can delete the custom object. This parameter can
take one of the following values:

l Y. A user can delete the custom object.

l N. A user cannot delete the custom object.
l CObj_Deleted. Specifies if the custom object is deleted. This parameter can take one of
the following values:

l 0. The custom object is not deleted.

l 1. The custom object is deleted.
l CObj_TargetTable. Specifies the table from which fields can be added to the custom
object.

l CObj_Properties. Internal use only. Specifies the list of properties the custom object has.
When specifying multiple properties use a comma as a separator.

l CObj_CustomContent. Allows you to enter a custom script for the custom object.

l CObj_UseEntity. Specifies the table from which fields can be added to the custom object.

l CObj_TargetList. Internal use only.

l CObj_Ftable. Internal use only.

l CObj_FtableFCol. Internal use only.

l CObj_CheckNameOnly. Optional. Specifies how to check the custom object during update
operations. This parameter can take one of the following values:

Sage CRM 2023 R2 - Developer Guide Page 379 of 403

l TRUE. Allows object updates by checking the object name only.

l FALSE. Specifies that object name and entity are checked during object updates.

Return value

ID of the added object.

AddCustom_Screens method

Adds or modifies a field on a screen.

Parameters

l SeaP_SearchBoxName. Specifies the name of the screen where you want to add or modify
the field. This should match the Cobj_Name value specified in the Custom_
ScreenObjects table.

l SeaP_Order. Specifies the order in which the field appears on the screen.

l SeaP_ColName. Specifies the column name of the field.

l SeaP_Newline. Specifies if the field should appear on a new line. This parameter can take
one of the following values:

l 1. The field appears on a new line.

l 0. The field appears on the same line.
l SeaP_RowSpan. Specifies the number of rows that the field should span on the screen.

l SeaP_ColSpan. Specifies the number of columns that the field should span on the screen.

l SeaP_Required. Specifies if the field is required.

l Y. The field is required.

l N. The field is optional.
l SeaP_DeviceID. Specifies the ID of the device that this screen is for. Look up from the
Devices table.

l SeaP_OnChangeScript. Allows you to enter the client-side JavaScript to apply to the
OnChange event of the field.

l SeaP_ValidateScript. Specifies the server-side script to run to validate the field.

l SeaP_CreatedScript. Specifies the server-side script to run when the field is created.

l SeaP_Jump. Specifies the location to open when the field is clicked.

Return value

Returns the ID of the added field.

Sage CRM 2023 R2 - Developer Guide Page 380 of 403

Example

To add fields on a screen, you can also use the AddEntryScreenField method.

In the examples below, the AddCustom_Screens and AddEntryScreenField methods add the same
fields.

Using AddCustom_Screens method:

AddCustom_Screens('GlobalLibraryFilterBox',1,'libr_filename',0,1,1,'N',0,'','','','');

Using AddEntryScreenField method:

EntryScreenName='GlobalLibraryFilterBox';
FieldOrder=1;
FieldName='libr_filename';
NewLine=false;
RowSpan=1;
ColSpan=1;
Required=false;
AddEntryScreenField();

AddCustom_Scripts method

Adds a table- or entity-level script.

Parameters

l CScr_TableName. Specifies the name of the table to which the script applies.

l CScr_ScriptName. Specifies the script name.

l CScr_Order. Specifies the order in which this script should be run, if there are more than
one script on a table.

l CScr_Script. The actual script.

l CScr_ScriptUser. Specifies the user name under which to run the script, if applicable.

l CScr_ScriptType. Specifies the script type. This parameter can take one of the following
values:

l entity. Specifies that the script is entity-level.

l entitywrb. Specifies that the script is entity-level with rollback.

l tls. Specifies that the script is table-level.

l tlsdetached. Specifies that the script is detached table-level.

Sage CRM 2023 R2 - Developer Guide Page 381 of 403

l CScr_UseRollBack. Specifies if rollback is available on the script. This parameter can take
one of the following values:

l Y. Rollback is available.

l N. Rollback is not available.
l CScr_ViewName. Specifies the name of the view from which the script gets information.

Note that the CScr_IsEntityScript parameter of this method has been deprecated. Please use the
CScr_ScriptType parameter instead.

Return value

ID of the added record.

AddCustom_Tables method

Adds a table.

Parameters

l Bord_Caption. Specifies the table caption.

l Bord_System. Specifies whether this is a system table. In the Sage CRM user interface,
system tables cannot be viewed through <My Profile> | Administration |
Customization.
This parameter can take one of the following values:

l Y. Specifies that the table is system.

l N. Specifies that the table is non-system.
l Bord_Hidden. Specifies whether the table is hidden. In the Sage CRM user interface,
hidden tables cannot be viewed through <My Profile> | Administration | Customization
This parameter can take one of the following values:

l Y. Specifies that the table is hidden.

l N. Specifies that the table is visible. Flag to indicate if this table is to be hidden.
l Bord_Name. Specifies the table name.

l Bord_Prefix. Specifies the prefix to add to all the fields in the table.

l Bord_IdField. Specifies the name of the table field that holds the unique ID of each row.

l Bord_PrimaryTable. Specifies whether the table is primary and has territory security
applied.
This parameter can take one of the following values:

l Y. Specifies that the table is primary.

l N or (NULL). Specifies that the table is not primary.

Sage CRM 2023 R2 - Developer Guide Page 382 of 403

l Bord_ProgressTableName. Specifies the name of the table used for workflow progress.

l Bord_ProgressNoteField. Specifies the name of the field used for workflow tracking
notes.

l Bord_WorkflowIdField. Specifies whether the table has a <prefix>_WorkflowId field. This
parameter can take one of the following values:

l Y. The <prefix>_WorkflowId field is present.

l N. The <prefix>_WorkflowId field is not available.
l Bord_DatabaseId. Specifies the ID of the database where the table resides. To look up this
ID, use Custom_Databases. If the table resides in the main Sage CRM database, leave this
parameter blank.

Return value

ID of the added record.

AddCustom_Tabs method

Adds or modifies a tab in a tab group.

Parameters

l Tabs_Permission. Internal use only. Should be set to 0.

l Tabs_PerLevel. Internal use only. Should be set to 0.

l Tabs_Order. Specifies the order in which the tab appears in the tab group.

l Tabs_Entity. Specifies the name of the tab group.

l Tabs_Caption. Specifies the tab caption.

l Tabs_Action. Specifies the tab action name as a string.

l Tabs_Customfilename. Specifies the name of the ASP page to use for this tab. Use this
parameter if the Tabs_Action parameter is set to CustomFile.

l Tabs_WhereSQL. Specifies the SQL clause that restricts the appearance of the tab.

l Tabs_Bitmap. Specifies the bitmap to use for the tab.

l Tabs_DeviceId. Specifies the device ID. Use a device ID from the Devices table.

l Tabs_SecurityEntity. Specifies the entity that is used to determine whether a particular
user has permissions to view or use the tab.

l Tabs_Deleted. Specifies whether the tab is deleted. This parameter can take one of the
following values:

Sage CRM 2023 R2 - Developer Guide Page 383 of 403

l 1. The tab is deleted.

l 0. The tab is not deleted.
l Tabs_InButtonGroup. Specifies if a tab group should be implemented. This parameter can
take one of the following values:

l 1. A tab group should be implemented.

l 0. No tab group needs to be implemented.

Return value

ID of the added record.

AddLPCategory method

Adds a dashboard category.

Parameters

l Name. Specifies the dashboard category name.

l ParentId. Specifies the ID of the parent category.

l Deleted. Specifies whether the dashboard category is deleted. This parameter can take one
of the following values:

l 1. The category is deleted.

l 0. The category is not deleted.

Return value

ID of the added category.

AddLPGadget method

Adds a dashboard gadget.

Parameters

l Name. Specifies the gadget name.

l Description. Specifies the gadget description.

l GadgetType. Specifies the gadget type.

l LayoutXml. Specifies the gadget layout XML data. Make sure to replace all gadget IDs with
markers for the FinishLandingPage method.

Sage CRM 2023 R2 - Developer Guide Page 384 of 403

l DataBinding. Specifies the CRM data source (such as report ID and entity ID) to be used
with the gadget, in XML format.

l LayoutId. Specifies the ID of the dashboard to which the gadget belongs.

l CategoryId. Specifies the ID of the category to which the gadget belongs.

l Deleted. Specifies whether the gadget is deleted. This parameter can take one of the
following values:

l 1. The gadget is deleted.

l 0. The gadget is not deleted.
l SourceId. Specifies the source gadget ID for the FinishLandingPage method.

Return value

AddLPLayout method

Adds a dashboard.

Parameters

l Name. Specifies the dashboard name.

l Description. Specifies the dashboard description.

l CategoryId. Specifies the category to which the dashboard belongs. If the dashboard has
no category, set this parameter to 0.

l LayoutXml. Specifies the dashboard layout XML data. Make sure to replace all gadget IDs
with markers for the FinishLandingPage method.

l LayoutType. Specifies the layout type. Currently there is only one layout type available.

l Deleted. Specifies whether the dashboard is deleted. This parameter can take one of the
following values:

l 1. The dashboard is deleted.

l 0. The dashboard is not deleted.
l IsTemplate. Specifies if the dashboard is a template.

l TemplChannels. Specifies the CRM teams to which the dashboard is assigned.

l TemplUsers. Specifies the CRM users to whom the dashboard is assigned.

l SourceId. Specifies the source dashboard ID for the FinishLandingPage method.

Return value

ID of the added dashboard.

Sage CRM 2023 R2 - Developer Guide Page 385 of 403

AddLPUserLayout method

Assigns a dashboard template to a user.

Parameters

l LayoutId. Specifies the dashboard ID.

l TemplateLayoutId. Specifies the dashboard template ID.

l UserId. Specifies the user ID.

l Deleted. Specifies whether the dashboard template is deleted. This parameter can take one
of the following values:

l 1. The dashboard template is deleted.

l 0. The dashboard template is not deleted.

Return value

AddMessage method

Sets the message to show to a user while the component is being installed.

Parameters

Ms_Message. Sets the message.

Return value

AddProduct method

Adds a product.

Parameters

l Prod_Name. String.

l Prod_Description. String.

l Prod_ListPrice. String.

Sage CRM 2023 R2 - Developer Guide Page 386 of 403

l Prod_Image. String.

l Prod_APR. String.

Return value

AddView method

Adds a view.

Parameters

l AViewName. Specifies the view name.

l AEntity. Specifies the entity to which the view relates. For system and hidden entities, use
the System entity.

l ADescription. Specifies the view description.

l AViewScript. Specifies a SQL query for the view.

l ACanEdit. Specifies whether the view can be edited. This parameter can take one of the
following values:

l TRUE. The view can be edited.

l FALSE. The view cannot be edited.
l ACanDelete. Specifies whether the view can be deleted. This parameter can take one of the
following values:

l TRUE. The view can be deleted.

l FALSE. The view cannot be deleted.
l AReportsView. Specifies whether the view can be used in reports. This parameter can take
one of the following values:

l TRUE. The view can be used in reports.

l FALSE. The view cannot be used in reports.
l ATargetsView. Specifies whether the view can be used in groups. This parameter can take
one of the following values:

l TRUE. The view can be used in groups.

l FALSE. The view cannot be used in groups.
l ForceOverwrite. Specifies whether to overwrite an existing view in the database when
adding the new view, provided that these two views are different. This parameter can take
one of the following values:

Sage CRM 2023 R2 - Developer Guide Page 387 of 403

l TRUE. Overwrites the existing view in the database.

l FALSE. Keeps the existing view in the database.
l ASearchView. Specifies whether to include the new view in keyword searches. This
parameter can take one of the following values:

l TRUE. The view is included in keyword searches.

l FALSE. The view is excluded from keyword searches.

Return value

Sage CRM 2023 R2 - Developer Guide Page 388 of 403

Copy methods
l CopyAndDropColumn method. Modifies the properties of a column.

l CopyAspTo method. Copies an ASP file from one location to another.

l CopyFile method. Copies a file from one location to the other.

CopyAndDropColumn method

Modifies the properties of a column.

This method creates a new column, copies data from the source column to that new column,
updates the new column properties according to the specified parameters, deletes the source
column, and then assigns the name of the source column to the new column.

Parameters

l Col_TableName. Specifies the name of the table that contains the column to be modified.

l Col_ColumnName. Specifies the column name.

l Col_Type. Specifies the new data type of the column.

l Col_Size. Specifies the new size of the column.

l Col_Allow_Nuls. Specifies whether the column allows null values.

Return value

None

CopyAspTo method

Copies an ASP file from one location to another. Relative paths are allowed in the parameters of
this method.

Parameters

l CTo_FileName. Specifies the source file path and name (copy from).

l CTo_NewFileName. Specifies the target file path and name (copy to).

Return value

Sage CRM 2023 R2 - Developer Guide Page 389 of 403

Example

CopyAspTo('custompages\\Edit.asp','..\\custompages\\system\\Edit.asp');

CopyFile method

Copies a file from one location to the other.

Parameters

l SourceFile. Specifies the source file name (copy from).

l TargetFile. Specifies the target file name (copy to).

Return value

None

Sage CRM 2023 R2 - Developer Guide Page 390 of 403

Create methods
l CreateNewDir method. Creates a new directory.

l CreateTable method. Creates a table in the database.

CreateNewDir method

Creates a new directory.

Parameters

DirName. Specifies the directory name.

Return value

None

CreateTable method

Creates a table in the database.

Created table has the following standard Sage CRM fields: CreatedBy, CreatedDate, UpdatedBy,
UpdatedDate, TimeStamp, and Deleted.

Parameters

l Cr_Tablename. Specifies the table name.

l Cr_Prefix. Specifies the prefix to be added to every column in the table.

l Cr_Identity. Specifies the name of the identity column in the table. The name you specify
must start with the prefix.

l Cr_PrimaryTable. Specifies whether the table is primary in Sage CRM. A primary table
includes the security territory column. This parameter can take one of the following values:

l True. Indicates that the table is primary.

l False. Indicates that the table is not primary.
l SystemTable. Specifies whether the table is system. Accepts one of the following values:

l True. Indicates that the table is system.

l False. Indicates that the table is non-system.

Sage CRM 2023 R2 - Developer Guide Page 391 of 403

l HiddenTable. Specifies whether the table is hidden. A hidden table is not accessible from
<My Profile> | Administration | Customization. This parameter can take one of the
following values:

l True. Indicates that the table is hidden.

l False. Indicates that the table is not hidden.
l Cr_WorkflowIdField. Specifies whether this table has a <prefix>_WorkflowId field.

l Cr_ProgressTableName. Specifies the name of the table used to set and track progress.
For example, CaseProgress.

l Cr_ProgressNoteField. Specifies the name of the field used to store progress notes.

l Cr_NoIDCol. Specifies whether the table has an auto-incrementing field.

Return value

Sage CRM 2023 R2 - Developer Guide Page 392 of 403

Delete and Drop methods
l DeleteColumn method. Deletes the specified table column.

l DeleteCustom_Caption method. Deletes the specified caption.

l DeleteCustom_Captions method. Deletes the specified caption family.

l DeleteCustom_Field method. Deletes the specified field from the system.

l DeleteCustom_Screen method. Deletes the specified screen.

l DeleteCustom_ScreenObjects method. Deletes screen objects.

l DropConstraint method. Deletes the specified constraint from a table in the database,
such as foreign key.

l DropTable method. Deletes the specified table from the database.

l DropView method. Deletes the specified view from the database.

DeleteColumn method

Deletes the specified table column.

Parameters

l TableName. Specifies the name of the table that includes the column to be deleted.

l ColumnName. Specifies the column name.

To delete table columns, we recommend that you use the DeleteCustom_Field method.

Return value

None

DeleteCustom_Caption method

Deletes the specified caption.

Parameters

l Capt_FamilyType. Specifies the caption family type.

l Capt_Family. Specifies the caption family.

l Capt_Code. Specifies the caption code.

Sage CRM 2023 R2 - Developer Guide Page 393 of 403

Return value

None

DeleteCustom_Captions method

Deletes the specified caption family.

Parameters

l Capt_FamilyType. Specifies the caption family type.

l Capt_Family. Specifies the caption family.

Return value

None

DeleteCustom_Field method

Deletes the specified field from the system.

Deleting a field by using this method removes the field from all screens, lists, reports, saved
searches, notifications and other locations in the system.

Parameters

l ATableName.

l AColumnName.

Return value

None

DeleteCustom_Screen method

Deletes the specified screen.

This method deletes all items for the specified screen regardless of device.

Parameters

SeaP_SearchBoxName. Specifies the name of the screen to delete.

Sage CRM 2023 R2 - Developer Guide Page 394 of 403

Return value

DeleteCustom_ScreenObjects method

Deletes screen objects.

Parameters

l CObj_Name. Specifies the name of the Custom_ScreenObject for which you want to delete
data.

l DeleteHeader. Specifies whether to delete the Custom_ScreenObject record from the
Custom_ScreenObjects table. This parameter can take one of the following values:

l True. Specifies to delete the object record in the Custom_ScreenObjects table.

l False. Keeps the object record in the Custom_ScreenObjects table, but deletes
subitems from Custom_Lists, Custom_Screens, and Custom_ContainerItems.

l CObj_DeviceID. Specifies the device records to delete. This parameter can take one of the
following values:

l <DeviceID>. Specifies the ID of the device whose records are to be deleted.

l 0. Specifies to delete all records for every device.

l 1. Specifies to delete desktop information only.

Return value

DropConstraint method

Deletes the specified constraint from a table in the database, such as foreign key.

Parameters

l AConstraintName. Specifies the name of the constraint to delete from the database.

l ATableName. Specifies the name of the table that contains the constraint.

Return value

Sage CRM 2023 R2 - Developer Guide Page 395 of 403

DropTable method

Deletes the specified table from the database.

Parameters

ATableName. Specifies the name of the table to delete.

Return value

DropView method

Deletes the specified view from the database.

Parameters

AViewName. Specifies the name of the view to delete.

Return value

Sage CRM 2023 R2 - Developer Guide Page 396 of 403

Get methods
l GetDLLDir method. Returns the full path to the eware.dll file.

l GetInstallDir method. Returns the path to the Sage CRM installation folder.

l Param method. Returns the value of the specified parameter.

GetDLLDir method

Returns the full path to the eware.dll file.

Parameters

None

Return value

Full path to the eware.dll file as a string.

GetInstallDir method

Returns the path to the Sage CRM installation folder.

Parameters

None

Return value

Full path and name of the Sage CRM installation folder as a string.

Example

var x = GetInstallDir();

Gets the path to the Sage CRM installation folder and stores it in the x variable.

Param method

Returns the value of the specified parameter.

Sage CRM 2023 R2 - Developer Guide Page 397 of 403

Parameters

Pr_SearchNam. Specifies the parameter name.

Return value

Parameter value.

Sage CRM 2023 R2 - Developer Guide Page 398 of 403

SearchAndReplace methods
l SearchAndReplaceCustomFile method. Finds and replaces text in the specified file.

l SearchAndReplaceInDir method. Finds and replaces text in all files located in the
specified folder.

l SearchAndReplaceInFile method. Finds and replaces text in the specified file located in
<Sage CRM installation folder>\CustomPages.

SearchAndReplaceCustomFile method

Finds and replaces text in the specified file.

Parameters

l Sr_FileName. Specifies the full path and name of the target file.

l Sr_StringToSearch. Specifies the text to search for and replace.

l Sr_ReplaceString. Specifies the replacement text.

Return value

SearchAndReplaceInDir method

Finds and replaces text in all files located in the specified folder.

Parameters

l ADirPath. Specifies the full path and name of the target folder.

l AStringToSearch. Specifies the text to search for and replace.

l AReplaceString. Specifies the replacement text.

Return value

SearchAndReplaceInFile method

Finds and replaces text in the specified file located in <Sage CRM installation
folder>\CustomPages.

Sage CRM 2023 R2 - Developer Guide Page 399 of 403

Parameters

l Sr_FileName. Specifies the name of the target file.

l Sr_StringToSearch. Specifies the text to search for and replace.

l Sr_ReplaceString. Specifies the replacement text.

Return value

Sage CRM 2023 R2 - Developer Guide Page 400 of 403

Other methods
l FinishLandingPage method. Replaces all the markers in layoutXml with new IDs collected
during creation of dashboards and gadgets.

l FileOpen method. Returns values stored in the specified comma-separated values (.csv) or
Microsoft Excel file.

l ProgressScriptTransaction method. Commits to the database what has already been
processed and starts a new transaction.

l QueryResultsToFile method. Runs the specified SQL select statement and writes its
result to a comma-separated values (.csv) file on the Sage CRM server.

l RunSQL method. Runs the specified SQL script.

l TableExists method. Checks whether the specified table exists in custom_table.

FinishLandingPage method

Replaces all the markers in layoutXml with new IDs collected during creation of dashboards and
gadgets. Make sure to run this method after running any other interactive dashboard methods.

The interactive dashboard methods should be run in the following order:

1. AddLPCategory

2. AddLPLayout

3. AddLPGadget

4. AddLPUserLayout

5. FinishLandingPage

Return value

FileOpen method

Returns values stored in the specified comma-separated values (.csv) or Microsoft Excel file.

Parameters

AFileName. Specifies the full path and name of the .csv or Microsoft Excel file.

Sage CRM 2023 R2 - Developer Guide Page 401 of 403

Return value

Returns the DataFile object that can be used to process the values in the file. The DataFile object
has the following properties:

l EOF. Indicates if the end of the file has been reached. Can take one of the following values:

l True. The end of the file has been reached.

l False. The end of the file has not been reached.
l FieldCount. Returns the number of columns in the file based on the current row.

The DataFile object exposes the following methods:

l NextRow. Skips the file pointer on to the next row in the file. This method does not have
any parameters.

l GetField. Returns the value in the given field for the current row.
This method has the AIndex parameter, which indicates the column number to return the
value for. When the AIndex is set to 0, it returns the value in the first column of the current
row, and so on.

ProgressScriptTransaction method

Commits to the database what has already been processed and starts a new transaction.

Parameters

ComminOnError. This optional parameter commits database transactions even if an error has
occurred.

Return value

None

QueryResultsToFile method

Runs the specified SQL select statement and writes its result to a comma-separated values (.csv)
file on the Sage CRM server.

Parameters

l FileName. Specifies the full path and name of the .csv file to write to.

l QueryString. Specifies the SQL select statement.

Sage CRM 2023 R2 - Developer Guide Page 402 of 403

Return value

A message providing information whether the operation completed successfully.

Example

QueryResultsToFile("c:\\test.csv","SELECT capt_family,
capt_code,capt_fr FROM custom_captions ORDER BY capt_family,
capt_order");

RunSQL method

Runs the specified SQL script.

You can use this method to run simple or complex SQL scripts, from inserting or updating a record
to creating and deleting tables and views.

We recommend that you test your SQL script before running it in a production environment.

Parameters

Sql. Specifies the SQL script to run.

Return value

None

TableExists method

Checks whether the specified table exists in custom_table.

Parameters

TableName. Specifies the table name.

Return value

A Boolean value indicating whether the table exists.

Sage CRM 2023 R2 - Developer Guide Page 403 of 403

	About this guide
	Getting started
	Sage CRM architecture
	Web
	Extensibility
	.NET API
	Security
	Database

	Creating an ASP page
	Adding an ASP page to Sage CRM
	Framesets
	Creating custom queries
	Creating a record set
	Formatting a list
	Manipulating record sets

	Understanding context
	Scripting in the Sage CRM interface
	Using field-level scripting
	Using table-level scripting
	Example: Client-side validation
	Example: Accessing user information
	Example: Getting information about installed modules

	Customization
	Using ASP pages
	Using customizable areas
	Transferring customizations to another Sage CRM instance

	Objects and blocks
	Objects
	Blocks
	About blocks
	Referencing block names
	Creating a block
	Customizing a block
	Displaying a block

	Lists
	Creating a list
	Customizing a list
	Displaying a list using runblock
	Displaying a list using an ASP page

	Screens
	Creating a screen
	Customizing a screen
	Displaying a screen using runblock and screen name
	Displaying a screen using runblock with a custom block
	Displaying a screen using an ASP page

	Buttons
	Creating button groups
	Adding buttons to button groups
	Displaying button groups
	Restricting access to button groups

	Classic Dashboard
	Customizing the Classic Dashboard
	Adding a List block to the Classic Dashboard
	Adding a Content block to the Classic Dashboard
	Adding a Chart block to the Classic Dashboard

	Interactive Dashboard
	Customizing the Interactive Dashboard
	Adding a block to the Interactive Dashboard using the Contents field
	Displaying an ASP page in a gadget
	Adding a third-party gadget to the Interactive Dashboard

	System menus
	Modifying system menus
	Creating a new menu button
	Adding an external link to the main menu

	Tabs
	Creating a new tab group
	Editing the main menu tab group
	Adding a tab that links to an ASP page
	Restricting access to a tab
	Tab properties
	Tab actions

	Adding Help to custom pages

	Database
	Creating a new database table
	Creating a new database connection
	Creating a new table connection
	Table- and entity-level scripts
	Table-level scripts
	Detached table-level scripts
	Entity-level scripts
	Creating a script
	Viewing script logs
	Disabling table-level scripts

	Database customization examples
	Creating a tab to display a list of invoices
	Displaying an invoice from a list
	Adding new data entry and maintenance screens
	Using UpdateRecord in an entity-level script
	Using InsertRecord in a table-level script
	Using PostInsertRecord in a table-level script
	Using UpdateRecord in a table-level script
	Using DeleteRecord in a table-level script

	Getting a list of field types used in the system

	Graphics
	Considerations for using graphics
	Supported graphic file formats
	Using external images
	Changing image color
	Clearing an image
	Applying dithering, zooming, or transparency
	Setting color, line width, and style
	Setting a color
	Setting line width
	Setting line style

	Filling solid shapes with color
	Specifying a color
	Loading an image
	Specifying area to fill in
	Specifying a predefined style

	Changing current font
	Selecting a font
	Setting font size
	Setting font color
	Setting font style
	Rotating text output

	Using animation
	Suppressing errors when processing an image
	Code samples
	Steps to add a progress bar
	Steps to add a pipeline to show Opportunities for a Company
	Implementing animation

	Workflow
	Changing workflow state
	ASP page that changes workflow state

	Moving records to another workflow
	Identifying workflow context
	Identifying workflow transitions
	Scripting escalation rules in a component
	Activating workflow for secondary or custom entities
	Using ASP pages in workflow
	Creating workflow on an external table
	Using client side code in workflow
	Charts
	About animated and interactive charts
	Creating an Opportunity certainty widget
	Creating an Opportunities and Cases widget
	Creating an organization chart

	APIs
	Using Web Services API
	About Web Services
	Prerequisites for using Web Services
	Enabling Web Services for a user
	Configuring Web Services
	Required fields in quotes and orders
	Using the WSDL file
	Web Services methods
	Web Services objects
	Web Services selection fields
	Sample SOAP requests and XML
	C# code samples

	Using SData API
	About SData
	Prerequisites for using SData
	SData authentication
	Managing SData access
	HTTP request URL
	SData endpoints

	Using .NET API

	Reference
	ASP objects
	AddressList object
	Attachment object
	AttachmentList object
	CRM object
	CRMBase object
	CRMBlock object
	CRMChartGraphicBlock object
	CRMContainerBlock object
	CRMContentBlock object
	CRMEntryBlock object
	CRMEntryGroupBlock object
	CRMFileBlock object
	CRMGraphicBlock object
	CRMGridColBlock object
	CRMListBlock object
	CRMMarqueeBlock object
	CRMMessageBlock object
	CRMOrgGraphicBlock object
	CRMPipelineGraphicBlock object
	CRMQuery object
	CRMRecord object
	CRMSelfService object
	CRMTargetLists object
	CRMTargetListField object
	CRMTargetListFields object
	Email object
	MailAddress object
	MsgHandler object

	Component Manager methods
	Add methods
	Copy methods
	Create methods
	Delete and Drop methods
	Get methods
	SearchAndReplace methods
	Other methods

